west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHU Sipin" 2 results
  • Progress in the regulation of bone remodeling at the cellular level

    Bone remodeling requires an intimate cross-talk between osteoclasts and osteoblasts and is tightly coordinated with regulatory proteins that interact through complex autocrine/paracrine processes. Osteocytes, bone lining cells, osteomacs and vascular endothelial cells also regulate bone remodeling in the basic multicellular unit (BMU) via cell signaling networks of ligand-receptor complexes. In addition, through secreted and membrane-bound factors in the bone microenvironment, T and B lymphocytes mediate bone homeostasis for osteoimmunology. Osteoporosis and other bone diseases occur because multicellular communication within the BMU is disrupted. This review focuses on the roles of the cells in the BMU and the interaction between these cells and the factors involved in regulating bone remodeling at the cellular level. Understanding the process of bone remodeling and related genes could help us to lay the foundation for drug development against bone diseases.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Progress on neurogenesis mechanisms of endogenous adult neural stem cells

    Endogenous adult neural stem cells are closely related to the normal physiological functions of the brain and many neurodegenerative diseases. Neurons are affected by factors such as extracellular microenvironment and intracellular signaling. In recent years, some specific signaling pathways have been found that affect the occurrence of neural stem cells in adult neural networks, including proliferation, differentiation, maturation, migration, and integration with host functions. In this paper, we summarize the signals and their molecular mechanisms, including the related signaling pathways, neurotrophic factors, neurotransmitters, intracellular transcription factors and epigenetic regulation of neuronal differentiation from both the extracellular and intracellular aspects, providing basic theoretical support for the treatment of central nervous system diseases through neural stem cells approach.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content