west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "constitutive model" 4 results
  • Research Status and Development Trends of the Heart Valve Mechanical Properties

    The study of mechanical properties on heart valves can provide an important theoretical basis for doctors to repair heart valves and prosthetic valve materials research. In this paper, we present the current status of the mechanical property study methods of heart valve, expound the methods and special requirements about uniaxial tensile test and biaxial tensile test of the heart valve, and further discuss several establishment methods of heart valve constitutive models. We also discuss the development trend of heart valve mechanics.

    Release date: Export PDF Favorites Scan
  • Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression

    In order to study the mechanical behavior of degeneration and nucleotomy of lumbar intervertebral disc, compression experiments with porcine lumbar intervertebral discs were carried out. The lumbar intervertebral discs with trypsin-treated and nucleus nucleotomy served as the experimental group and the normal discs as the control group. Considering the effects of load magnitude and loading rate, the relationship between stress and strain, instantaneous elastic modulus and creep property of intervertebral disc were obtained. The creep constitutive model was established. The results show that the strain and creep strain of the experimental group increase significantly with the increase of compression load and loading rate, whereas the instantaneous elastic modulus decreases obviously, compared with the control group. It indicates that the effect of load magnitude and loading rate on load-bearing capacity of intervertebral disc after nucleotomy is larger obviously than that of normal disc. The creep behavior of the experimental group can be still predicted by the Kelvin three-parameter solid model. The results will provide theoretical foundation for clinical treatment and postoperative rehabilitation of intervertebral disc disease.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • The elimination method of preloading force for soft tissue based on the linear loading region

    Aiming at the problem of the influence of preloading force on its mechanical response in soft tissue compression experiments, an elimination method of preloading force based on linear loading region is proposed. Unconfined compression experiments under a variety of different preloading forces are performed. The influence of the preloading force on the parameters of constitutive model is analyzed. In the preload phase, the mechanical response of the soft tissue is taken as a linear model. The preloading force is eliminated by taking the preloading phase into account throughout the response process. According to five different preloading forces of the unconfined compression experiments, the elimination method is validated with two different constitutive models of soft tissue, and the error between the models obtained by the preloading force elimination method and the traditional method with the experimental results is compared. The results show that the error obtained by preloading force elimination method is significantly smaller than the traditional method. The preloading force elimination method can eliminate the influence of preloading force on mechanical response to a certain extent, and constitutive model parameters which are closer to the true properties of soft tissue can be obtained.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall

    Coronary artery diseases (CAD) have always been serious threats to human health. The measurement, constitutive modeling, and analysis of mechanical properties of the blood vessel wall can provide a tool for disease diagnosis, stent implantation, and artificial artery design. The vessel wall has both active and passive mechanical properties. The passive mechanical properties are mainly determined by elastic and collagen fibers, and the active mechanical properties are determined by the contraction of vascular smooth muscle cells (VSMC). Substantial studies have shown that, the two-layer model of the vessel wall can feature the mechanical properties well, and the circumferential, axial and radial strain and stress are of great significance in arterial wall mechanics. This study reviewed recent investigations of mechanical properties of the vessel wall. Challenges and opportunities in this area are discussed relevant to the clinical treatment of coronary artery diseases.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content