We applied Demons and accelerated Demons elastic registration algorithm in radiotherapy cone beam CT (CBCT) images, We provided software support for real-time understanding of organ changes during radiotherapy. We wrote a 3D CBCT image elastic registration program using Matlab software, and we tested and verified the images of two patients with cervical cancer 3D CBCT images for elastic registration, based on the classic Demons algorithm, minimum mean square error (MSE) decreased 59.7%, correlation coefficient (CC) increased 11.0%. While for the accelerated demons algorithm, MSE decreased 40.1%, CC increased 7.2%. The experimental verification with two methods of demons algorithm obtained the desired results, but the small difference appeared to be lack of precision, and the total registration time was a little long. All these problems need to be further improved for accuracy and reducing of time.
Mitral valve disease is one of the most popular heart valve diseases. Precise positioning and displaying of the valve characteristics is necessary for the minimally invasive mitral valve repairing procedures. This paper presents a multi-resolution elastic registration method to compute the deformation functions constructed from cubic B-splines in three dimensional ultrasound images, in which the objective functional to be optimized was generated by maximum likelihood method based on the probabilistic distribution of the ultrasound speckle noise. The algorithm was then applied to register the mitral valve voxels. Numerical results proved the effectiveness of the algorithm.
In the process of positron emission tomography (PET) data acquiring, respiratory motion reduces the quality of PET imaging. In this paper, we present a correction method using three level grids B-spline elastic method to correct denoised and reorganized sinograms for respiratory motion correction. Using GATE simulates NCAT respiratory motion model to generate raw data which are used in experiment, the experiment results showed a significantly improved respiratory image with higher quality of PET, and the motion blur and structural information were fixed. The results proved the method of this paper would be effective for the elastic registration.