west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "entropy" 39 results
  • Wavelet Entropy Analysis of Spontaneous EEG Signals in Alzheimer's Disease

    Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P<0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P<0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r=0.601-0.799, P<0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.

    Release date: Export PDF Favorites Scan
  • Analysis of Anesthesia Characteristic Parameters Based on the EEG Signal

    All the collected original electroencephalograph (EEG) signals were the subjects to low-frequency and spike noise. According to this fact, we in this study performed denoising based on the combination of wavelet transform and independent component analysis (ICA). Then we used three characteristic parameters, complexity, approximate entropy and wavelet entropy values, to calculate the preprocessed EEG data. We then made a distinguishing judge on the EEG state by the state change rate of the characteristic parameters. Through the anesthesia and non-anesthesia EEG data processing results showed that each of the three state change rates could reach about 50.5%, 21.6%, 19.5%, respectively, in which the performance of wavelet entropy was the highest. All of them could be used as a foundation in the quantified research of depth of anesthesia based on EEG analysis.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Automatic Classification of Epileptic Electroencephalogram Signal Based on Improved Multivariate Multiscale Entropy

    Traditional sample entropy fails to quantify inherent long-range dependencies among real data. Multiscale sample entropy (MSE) can detect intrinsic correlations in data, but it is usually used in univariate data. To generalize this method for multichannel data, we introduced multivariate multiscale entropy into multiscale signals as a reflection of the nonlinear dynamic correlation. But traditional multivariate multiscale entropy has a large quantity of computation and costs a large period of time and space for more channel system, so that it can not reflect the correlation between variables timely and accurately. In this paper, therefore, an improved multivariate multiscale entropy embeds on all variables at the same time, instead of embedding on a single variable as in the traditional methods, to solve the memory overflow while the number of channels rise, and it is more suitable for the actual multivariate signal analysis. The method was tested in simulation data and Bonn epilepsy dataset. The simulation results showed that the proposed method had a good performance to distinguish correlation data. Bonn epilepsy dataset experiment also showed that the method had a better classification accuracy among the five data set, especially with an accuracy of 100% for data collection of Z and S.

    Release date: Export PDF Favorites Scan
  • Analysis of Electroencephalogram Sample Entropy Measurement in Frontal Association Cortex Based on Heroin-induced Conditioned Place Preference in Rats

    To explore the relationship between the drug-seeking behavior, motivation of conditioned place preference (CPP) rats and the frontal association cortex (FrA) electroencephalogram (EEG) sample entropy, we in this paper present our studies on the FrA EEG sample entropy of control group rats and CPP group rats, respectively. We invested different behavior in four situations of the rat activities, i.e. rats were staying in black chamber of videoed boxes, those staying in white chamber of videoed boxes, those shuttling between black-white chambers and those shuttling between white-black chambers. The experimental results showed that, compared with the control group rats, the FrA EEG sample entropy of CPP rats staying in black chamber of video box and shuttling between white-black chambers had no significant difference. However, sample entropy is significantly smaller (P < 0.01) when heroin-induced group rats stayed in white chamber of video box and shuttled between black-white chambers. Consequently, the drug-seeking behavior and motivation of CPP rats correlated closely with the EEG sample entropy changes.

    Release date: Export PDF Favorites Scan
  • Brain Vigilance Analysis Based on the Measure of Complexity

    Vigilance is defined as the ability to maintain attention for prolonged periods of time. In order to explore the variation of brain vigilance in work process, we designed addition and subtraction experiment with numbers of three digits to induce the vigilance to change, combined it with psychomotor vigilance task (PVT) to measure this process of electroencephalogram (EEG), extracted and analyzed permutation entropy (PE) of 11 cases of subjects' EEG and made a brief comparison with nonlinear parameter sample entropy (SE). The experimental results showed that:PE could well reflect the dynamic changes of EEG when vigilance decreases, and has advantages of fast arithmetic speed, high noise immunity, and low requirements for EEG length. This can be used as a measure of the brain vigilance indicators.

    Release date: Export PDF Favorites Scan
  • Research of Electroencephalogram for Sleep Stage Based on Collaborative Representation and Kernel Entropy Component Analysis

    Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram signal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74±0.46%, sensitivity of 68.76±0.43% and specificity of 92.19±0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.

    Release date: Export PDF Favorites Scan
  • Multi-scale Permutation Entropy and Its Applications in the Identification of Seizures

    The electroencephalogram (EEG) has proved to be a valuable tool in the study of comprehensive conditions whose effects are manifest in the electrical brain activity, and epilepsy is one of such conditions. In the study, multi-scale permutation entropy (MPE) was proposed to describe dynamical characteristics of EEG recordings from epilepsy and healthy subjects, then all the characteristic parameters were forwarded into a support vector machine (SVM) for classification. The classification accuracies of the MPE with SVM were evaluated by a series of experiments. It is indicated that the dynamical characteristics of EEG data with MPE could identify the differences among healthy, inter-ictal and ictal states, and there was a reduction of MPE of EEG from the healthy and inter-ictal state to the ictal state. Experimental results demonstrated that average classification accuracy was 100% by using the MPE as a feature to characterize the healthy and seizure, while 99.58% accuracy was obtained to distinguish the seizure-free and seizure EEG. In addition, the single-scale permutation entropy (PE) at scales 1-5 was put into the SVM for classification at the same time for comparative analysis. The simulation results demonstrated that the proposed method could be a very powerful algorithm for seizure prediction and could have much better performance than the methods based on single scale PE.

    Release date: Export PDF Favorites Scan
  • Portable Epileptic Seizure Monitoring Intelligent System Based on Android System

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2.3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.

    Release date: Export PDF Favorites Scan
  • Analysis Methods of Short term Non linear Heart Rate Variability and Their Application in Clinical Medicine

    The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and timefrequency analysis, has reached a lot of consensus. The nonlinear analysis has also been widely applied in biomedical and clinical researches. However, for nonlinear HRV analysis, especially for shortterm nonlinear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three shortterm nonlinear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine.

    Release date: Export PDF Favorites Scan
  • Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement. If the fatigue is not treated properly, it will bring about a severe injury to the human body. With multi-channel collection of lower limb surface electromyography signals, this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics. The experimental result indicated that with the increase of muscle fatigue, muscle signal spectrum began to move to low frequency, the energy concentrated, the system complexity came down, and the band spectrum entropy which reflected the complexity was also reduced. By monitoring the entropy, we can measure the degree of muscle fatigue, and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content