west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "iliac screw" 5 results
  • Application of second sacral alar-iliac screw technique for reconstruction of spinopelvic stability

    Objective To summarize the current research progress of second sacral alar-iliac (S2AI) screw technique for reconstruction of spinopelvic stability. Methods The recent original literature concerning development, clinical applications, anatomy, imageology, and biomechanics of S2AI screw technique in reconstruction of spinopelvic stability was reviewed and analyzed. Results As a common clinical strategy for the reconstruction of spinopelvic stability, S2AI screws achieve satisfactory effectiveness of lumbosacral fixation without complications which were found during the application of traditional iliac screws technique. S2AI screw technique is more difficult to place screws by hand because of its narrow screw trajectory. Although the S2AI screws trajectory pass through 3 layers of bone cortex, the biomechanical cadaveric study demonstrate that no statistical difference in stiffness was found between the traditional iliac and S2AI screw in a spinopelvic fixation model. Conclusion S2AI screw technique should be a safe and feasible method for reconstruction of spinopelvic stability in place of the traditional iliac screw technique.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
  • TiRobot-assisted surgery by O-arm navigation system for percutaneous minimally invasive treatment of posterior pelvic ring injury

    ObjectiveTo evaluate the effectiveness of TiRobot-assisted surgery by O-arm navigation system for percutaneous minimally invasive treatment of posterior pelvic ring injury. Methods The clinical data of 76 patients with posterior pelvic ring injury between January 2016 and June 2021 were retrospectively analyzed. Among them, 45 cases were treated with minimally invasive percutaneous sacroiliac screw fixation assisted by TiRobot and O-arm navigation system (study group), 31 cases were treated with minimally invasive percutaneous sacroiliac screw fixation under the guidance of C-arm X-ray machine (control group). There was no significant difference in gender, age, cause of injury, Tile classification, time from injury to operation between the two groups (P>0.05). The operation time, intraoperative blood loss, the times of nail track adjustment, and intraoperative fluoroscopy times were recorded. The quality of fracture reduction was evaluated by Matta score. At last follow-up, Majeed score was used to evaluate the recovery of pelvic function. ResultsA total of 72 screws were implanted in the study group, with a median of 1 (1, 2) screws per patient. In the control group, 47 screws were implanted, with a median of 1 (1, 2) screws per patient. There was no significant difference in the number of screws between the two groups (Z=−0.392, P=0.695). The operation time, intraoperative blood loss, times of nail track adjustment, and intraoperative fluoroscopy times in the study group were significantly less than those in the control group (P<0.05). All patients were followed up 6-24 months (mean, 14 months). No serious complications was found after operation and during follow-up. Matta score was used to evaluate the quality of fracture reduction at 1 week after operation, and there was no significant difference between the two groups (Z=−1.135, P=0.256). At last follow-up, there was no significant difference of Majeed score between the two groups (Z=−1.279, P=0.201). ConclusionTiRobot-assisted surgery by O-arm navigation system is a reliable surgical method for the treatment of posterior pelvic ring injury, which can reduce the operation time and fluoroscopy times when compared with the traditional operation under the guidance of C-arm X-ray machine. The safety, accuracy, and efficiency of the operation were improved.

    Release date: Export PDF Favorites Scan
  • Clinical study of percutaneous double-segment lengthened sacroiliac screws internal fixation via three-dimensional navigation technology in treatment of Denis type Ⅱ and Ⅲ sacral fractures

    ObjectiveTo investigate the effectiveness of percutaneous double-segment lengthened sacroiliac screws internal fixation assisted by three-dimensional (3D) navigation technology in treatment of Denis type Ⅱ and Ⅲ sacral fractures. Methods A clinical data of 45 patients with the Denis type Ⅱ and Ⅲ sacral fractures admitted between January 2017 and May 2020 was retrospectively analyzed. There were 31 males and 14 females, with an average age of 48.3 years (range, 30-65 years). The pelvic fractures were all high energy injuries. According to the Tile classification standard, there were 24 cases of type C1, 16 cases of type C2, and 5 cases of type C3. The sacral fractures were classified as Denis type Ⅱ in 31 cases and type Ⅲ in 14 cases. The interval between injury and operation was 5-12 days (mean, 7.5 days). The lengthened sacroiliac screws were implanted in S1 and S2 segments respectively under the assistance of 3D navigation technology. The implantation time of each screw, the intraoperative X-ray exposure time, and the occurrence of surgical complications were recorded. After operation, the imaging reexamination was used to evaluate the screw position according to Gras standard and the reduction quality of sacral fractures according to Matta standard. At last follow-up, the pelvic function was scored with Majeed scoring standard. Results The 101 lengthened sacroiliac screws were implanted with the assisting of 3D navigation technology. The implantation time of each screw was 37.3 minutes on average (range, 30-45 minutes), and the X-ray exposure time was 46.2 seconds on average (range, 40-55 seconds). All patients had no neurovascular or organ injury. All incisions healed by first intention. The quality of fracture reduction was evaluated according to Matta standard as excellent in 22 cases, good in 18 cases, and fair in 5 cases, and the excellent and good rate was 88.89%. The screw position was evaluated according to Gras standard as excellent in 77 screws, good in 22 screws, and poor in 2 screws, and the excellent and good rate was 98.02%. All patients were followed up 12-24 months (mean, 14.6 months). All fractures healed and the healing time was 12-16 weeks (mean, 13.5 weeks). Pelvic function was evaluated according to Majeed scoring standard as excellent in 27 cases, good in 16 cases, fair in 2 cases, and the excellent and good rate was 95.56%. Conclusion Percutaneous double-segment lengthened sacroiliac screws internal fixation for the treatment of Denis type Ⅱ and Ⅲ sacral fractures is minimally invasive and effective. With the assistance of 3D navigation technology, the screw implantation is accurate and safe.

    Release date: Export PDF Favorites Scan
  • O-arm navigation versus C-arm navigation for guiding percutaneous long sacroiliac screws placement in treatment of Denis type Ⅱ sacral fractures

    Objective To compare the effectiveness of O-arm navigation and C-arm navigation for guiding percutaneous long sacroiliac screws in treatment of Denis type Ⅱ sacral fractures. Methods A retrospective study was conducted on clinical data of the 46 patients with Denis type Ⅱ sacral fractures between April 2021 and October 2022. Among them, 19 patients underwent O-arm navigation assisted percutaneous long sacroiliac screw fixation (O-arm navigation group), and 27 patients underwent C-arm navigation assisted percutaneous long sacroiliac screw fixation (C-arm navigation group). There was no significant difference in gender, age, causes of injuries, Tile classification of pelvic fractures, combined injury, the interval from injury to operation between the two groups (P>0.05). The intraoperative preparation time, the placement time of each screw, the fluoroscopy time of each screw during placement, screw position accuracy, the quality of fracture reduction, and fracture healing time were recorded and compared, postoperative complications were observed. Pelvic function was evaluated by Majeed score at last follow-up. Results All operations were completed successfully, and all incisions healed by first intention. Compared to the C-arm navigation group, the O-arm navigation group had shorter intraoperative preparation time, placement time of each screw, and fluoroscopy time, with significant differences (P<0.05). There was no significant difference in screw position accuracy and the quality of fracture reduction (P>0.05). There was no nerve or vascular injury during screw placed in the two groups. All patients in both groups were followed up, with the follow-up time of 6-21 months (mean, 12.0 months). Imaging re-examination showed that both groups achieved bony healing, and there was no significant difference in fracture healing time between the two groups (P>0.05). During follow-up, there was no postoperative complications, such as screw loosening and breaking or loss of fracture reduction. At last follow-up, there was no significant difference in pelvic function between the two groups (P>0.05). Conclusion Compared with the C-arm navigation, the O-arm navigation assisted percutaneous long sacroiliac screws for the treatment of Denis typeⅡsacral fractures can significantly shorten the intraoperative preparation time, screw placement time, and fluoroscopy time, improve the accuracy of screw placement, and obtain clearer navigation images.

    Release date: Export PDF Favorites Scan
  • Effectiveness of sacroiliac screw implantation assisted by three-dimensional printed faceted honeycomb guide plate in treatment of posterior pelvic ring fracture

    Objective To investigate the effectiveness of sacroiliac screw implantation assisted by three-dimensional (3D) printed faceted honeycomb guide plate in the treatment of posterior pelvic ring fracture. Methods The clinical data of 40 patients with posterior pelvic ring fractures treated with sacroiliac screw implantation between December 2019 and December 2022 were retrospectively analyzed. Among them, 18 cases were treated with sacroiliac screws fixation assisted by 3D printed faceted honeycomb guide plate (guide plate group), and 22 cases were treated with sacroiliac screws percutaneously fixation under fluoroscopy (conventional group). There was no significant difference in baseline data (P>0.05) such as gender, age, time from injury to operation, and Dennis classification between the two groups. The implantation time, frequency of C-arm X-ray fluoroscopy, frequency of guide pin adjustment of each sacroiliac screw, and postoperative complications and bone healing were recorded. Majeed score was used to evaluate the functional recovery at 6 months after operation, and CT was used to observe whether the screw penetrated the bone cortex. The deviation between the virtual position and the actual position of the screw tip, the sacral foramen, and the screw entry point was measured on the sagittal CT images of the guide plate group. Results The number of screws implanted in S1 and S2 vertebral bodies was 14 and 16 respectively in the guide plate group, and 17 and 18 respectively in the conventional group. The implantation time of each sacroiliac screw, the frequency of C-arm X-ray fluoroscopy, and the frequency of guide pin adjustment in S1, S2, and all vertebrae in the guide plate group were significantly less than those in the conventional group (P<0.05). Patients in both groups were followed up 8-48 months, with an average of 19.7 months. There was no incision infection, screw displacement, or internal fixation loosening in both groups. Callus growth was observed in all patients at 12 weeks after operation, and bone healing was achieved in all patients. The healing time ranged from 12 to 24 weeks, with an average of 15.7 weeks. No sacroiliac screw penetrated the bone cortex in the guide plate group; 2 patients in the conventional group had sacroiliac screws penetrating the bone cortex without damaging blood vessels or nerves. In the guide plate group, the deviation between the virtual position and the actual position of the screw tip, the sacral foramen, and the screw entry point were (2.91±1.01), (2.10±0.74), and (1.67±0.70) mm, respectively, with an average deviation of (2.19±1.22) mm. There was no significant difference in Majeed function evaluation between the two groups at 6 months after operation (P>0.05). Conclusion The application of 3D printed faceted honeycomb guide plate in sacroiliac screw implantation for posterior pelvic ring fracture can shorten the screw implantation time, reduce the frequency of fluoroscopy and guide pin adjustment, and reduce the risk of screw penetration through the bone cortex.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content