west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "image segmentation" 11 results
  • New Approach of Fundus Image Segmentation Evaluation Based on Topology Structure

    In view of the evaluation of fundus image segmentation, a new evaluation method was proposed to make up insufficiency of the traditional evaluation method which only considers the overlap of pixels and neglects topology structure of the retinal vessel. Mathematical morphology and thinning algorithm were used to obtain the retinal vascular topology structure. Then three features of retinal vessel, including mutual information, correlation coefficient and ratio of nodes, were calculated. The features of the thinned images taken as topology structure of blood vessel were used to evaluate retinal image segmentation. The manually-labeled images and their eroded ones of STARE database were used in the experiment. The result showed that these features, including mutual information, correlation coefficient and ratio of nodes, could be used to evaluate the segmentation quality of retinal vessel on fundus image through topology structure, and the algorithm was simple. The method is of significance to the supplement of traditional segmentation evaluation of retinal vessel on fundus image.

    Release date: Export PDF Favorites Scan
  • Segmentation Method of Colour White Blood Cell Image Based on HSI Modified Space Information Fusion

    This paper presents a kind of automatic segmentation method for white blood cell based on HSI corrected space information fusion. Firstly, the original cell image is transformed to HSI colour space conversion. Because the transformation formulas of H component piecewise function was discontinuous, the uniformity of uniform visual cytoplasm area in the original image was lead to become lower in this channel. We then modified formulas, and then fetched information of nucleus, cytoplasm, red blood cells and background region according to distribution characteristics of the H, S and I-channel, using the theory and method of information fusion to build fusion imageⅠand fusion imageⅡ, which only contained cytoplasm and a small amount of interference, and fetched nucleus and cytoplasm respectively. Finally, we marked the nucleus and cytoplasm region and obtained the final result of segmentation. The simulation results showed that the new algorithm of image segmentation for white blood cell had high accuracy, robustness and universality.

    Release date: Export PDF Favorites Scan
  • Image segmentation and classification of cytological cells based on multi-features clustering and chain splitting model

    The diagnosis of pancreatic cancer is very important. The main method of diagnosis is based on pathological analysis of microscopic image of Pap smear slide. The accurate segmentation and classification of images are two important phases of the analysis. In this paper, we proposed a new automatic segmentation and classification method for microscopic images of pancreas. For the segmentation phase, firstly multi-features Mean-shift clustering algorithm (MFMS) was applied to localize regions of nuclei. Then, chain splitting model (CSM) containing flexible mathematical morphology and curvature scale space corner detection method was applied to split overlapped cells for better accuracy and robustness. For classification phase, 4 shape-based features and 138 textural features based on color spaces of cell nuclei were extracted. In order to achieve optimal feature set and classify different cells, chain-like agent genetic algorithm (CAGA) combined with support vector machine (SVM) was proposed. The proposed method was tested on 15 cytology images containing 461 cell nuclei. Experimental results showed that the proposed method could automatically segment and classify different types of microscopic images of pancreatic cell and had effective segmentation and classification results. The mean accuracy of segmentation is 93.46%±7.24%. The classification performance of normal and malignant cells can achieve 96.55%±0.99% for accuracy, 96.10%±3.08% for sensitivity and 96.80%±1.48% for specificity.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Research and application of orthotopic DR chest radiograph quality control system based on artificial intelligence

    With the change of medical diagnosis and treatment mode, the quality of medical image directly affects the diagnosis and treatment of the disease for doctors. Therefore, realization of intelligent image quality control by computer will have a greater auxiliary effect on the radiographer’s filming work. In this paper, the research methods and applications of image segmentation model and image classification model in the field of deep learning and traditional image processing algorithm applied to medical image quality evaluation are described. The results demonstrate that deep learning algorithm is more accurate and efficient than the traditional image processing algorithm in the effective training of medical image big data, which explains the broad application prospect of deep learning in the medical field. This paper developed a set of intelligent quality control system for auxiliary filming, and successfully applied it to the Radiology Department of West China Hospital and other city and county hospitals, which effectively verified the feasibility and stability of the quality control system.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Research on brain image segmentation based on deep learning

    Brain image segmentation algorithm based on deep learning is a research hotspot at present. In this paper, firstly, the significance of brain image segmentation and the content of related brain image segmentation algorithm are systematically described, highlighting the advantages of brain image segmentation algorithms based on deep learning. Then, this paper introduces current brain image segmentation algorithms based on deep learning from three aspects: the brain image segmentation algorithms based on problems existent to brain image, the brain image segmentation algorithms based on prior knowledge guidance and the application of general deep learning models in brain image segmentation, so as to enable researchers in relevant fields to understand current research progress more systematically. Finally, this paper provides a general direction for the further research of brain image segmentation algorithm based on deep learning.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • An algorithm for three-dimensional plumonary parenchymal segmentation by integrating surfacelet transform with pulse coupled neural network

    In order to overcome the difficulty in lung parenchymal segmentation due to the factors such as lung disease and bronchial interference, a segmentation algorithm for three-dimensional lung parenchymal is presented based on the integration of surfacelet transform and pulse coupled neural network (PCNN). First, the three-dimensional computed tomography of lungs is decomposed into surfacelet transform domain to obtain multi-scale and multi-directional sub-band information. The edge features are then enhanced by filtering sub-band coefficients using local modified Laplacian operator. Second, surfacelet inverse transform is implemented and the reconstructed image is fed back to the input of PCNN. Finally, iteration process of the PCNN is carried out to obtain final segmentation result. The proposed algorithm is validated on the samples of public dataset. The experimental results demonstrate that the proposed algorithm has superior performance over that of the three-dimensional surfacelet transform edge detection algorithm, the three-dimensional region growing algorithm, and the three-dimensional U-NET algorithm. It can effectively suppress the interference coming from lung lesions and bronchial, and obtain a complete structure of lung parenchyma.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Study on the accuracy of automatic segmentation of knee CT images based on deep learning

    Objective To develop a neural network architecture based on deep learning to assist knee CT images automatic segmentation, and validate its accuracy. Methods A knee CT scans database was established, and the bony structure was manually annotated. A deep learning neural network architecture was developed independently, and the labeled database was used to train and test the neural network. Metrics of Dice coefficient, average surface distance (ASD), and Hausdorff distance (HD) were calculated to evaluate the accuracy of the neural network. The time of automatic segmentation and manual segmentation was compared. Five orthopedic experts were invited to score the automatic and manual segmentation results using Likert scale and the scores of the two methods were compared. Results The automatic segmentation achieved a high accuracy. The Dice coefficient, ASD, and HD of the femur were 0.953±0.037, (0.076±0.048) mm, and (3.101±0.726) mm, respectively; and those of the tibia were 0.950±0.092, (0.083±0.101) mm, and (2.984±0.740) mm, respectively. The time of automatic segmentation was significantly shorter than that of manual segmentation [(2.46±0.45) minutes vs. (64.73±17.07) minutes; t=36.474, P<0.001). The clinical scores of the femur were 4.3±0.3 in the automatic segmentation group and 4.4±0.2 in the manual segmentation group, and the scores of the tibia were 4.5±0.2 and 4.5±0.3, respectively. There was no significant difference between the two groups (t=1.753, P=0.085; t=0.318, P=0.752). Conclusion The automatic segmentation of knee CT images based on deep learning has high accuracy and can achieve rapid segmentation and three-dimensional reconstruction. This method will promote the development of new technology-assisted techniques in total knee arthroplasty.

    Release date: Export PDF Favorites Scan
  • A generative adversarial network-based unsupervised domain adaptation method for magnetic resonance image segmentation

    Intelligent medical image segmentation methods have been rapidly developed and applied, while a significant challenge is domain shift. That is, the segmentation performance degrades due to distribution differences between the source domain and the target domain. This paper proposed an unsupervised end-to-end domain adaptation medical image segmentation method based on the generative adversarial network (GAN). A network training and adjustment model was designed, including segmentation and discriminant networks. In the segmentation network, the residual module was used as the basic module to increase feature reusability and reduce model optimization difficulty. Further, it learned cross-domain features at the image feature level with the help of the discriminant network and a combination of segmentation loss with adversarial loss. The discriminant network took the convolutional neural network and used the labels from the source domain, to distinguish whether the segmentation result of the generated network is from the source domain or the target domain. The whole training process was unsupervised. The proposed method was tested with experiments on a public dataset of knee magnetic resonance (MR) images and the clinical dataset from our cooperative hospital. With our method, the mean Dice similarity coefficient (DSC) of segmentation results increased by 2.52% and 6.10% to the classical feature level and image level domain adaptive method. The proposed method effectively improves the domain adaptive ability of the segmentation method, significantly improves the segmentation accuracy of the tibia and femur, and can better solve the domain transfer problem in MR image segmentation.

    Release date: Export PDF Favorites Scan
  • A survey of loss function of medical image segmentation algorithms

    Medical image segmentation based on deep learning has become a powerful tool in the field of medical image processing. Due to the special nature of medical images, image segmentation algorithms based on deep learning face problems such as sample imbalance, edge blur, false positive, false negative, etc. In view of these problems, researchers mostly improve the network structure, but rarely improve from the unstructured aspect. The loss function is an important part of the segmentation method based on deep learning. The improvement of the loss function can improve the segmentation effect of the network from the root, and the loss function is independent of the network structure, which can be used in various network models and segmentation tasks in plug and play. Starting from the difficulties in medical image segmentation, this paper first introduces the loss function and improvement strategies to solve the problems of sample imbalance, edge blur, false positive and false negative. Then the difficulties encountered in the improvement of the current loss function are analyzed. Finally, the future research directions are prospected. This paper provides a reference for the reasonable selection, improvement or innovation of loss function, and guides the direction for the follow-up research of loss function.

    Release date: Export PDF Favorites Scan
  • Medical image segmentation data augmentation method based on channel weight and data-efficient features

    In computer-aided medical diagnosis, obtaining labeled medical image data is expensive, while there is a high demand for model interpretability. However, most deep learning models currently require a large amount of data and lack interpretability. To address these challenges, this paper proposes a novel data augmentation method for medical image segmentation. The uniqueness and advantages of this method lie in the utilization of gradient-weighted class activation mapping to extract data efficient features, which are then fused with the original image. Subsequently, a new channel weight feature extractor is constructed to learn the weights between different channels. This approach achieves non-destructive data augmentation effects, enhancing the model's performance, data efficiency, and interpretability. Applying the method of this paper to the Hyper-Kvasir dataset, the intersection over union (IoU) and Dice of the U-net were improved, respectively; and on the ISIC-Archive dataset, the IoU and Dice of the DeepLabV3+ were also improved respectively. Furthermore, even when the training data is reduced to 70 %, the proposed method can still achieve performance that is 95 % of that achieved with the entire dataset, indicating its good data efficiency. Moreover, the data-efficient features used in the method have interpretable information built-in, which enhances the interpretability of the model. The method has excellent universality, is plug-and-play, applicable to various segmentation methods, and does not require modification of the network structure, thus it is easy to integrate into existing medical image segmentation method, enhancing the convenience of future research and applications.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content