Recent years, convolutional neural network (CNN) is a research hot spot in machine learning and has some application value in computer aided diagnosis. Firstly, this paper briefly introduces the basic principle of CNN. Secondly, it summarizes the improvement on network structure from two dimensions of model and structure optimization. In model structure, it summarizes eleven classical models about CNN in the past 60 years, and introduces its development process according to timeline. In structure optimization, the research progress is summarized from five aspects (input layer, convolution layer, down-sampling layer, full-connected layer and the whole network) of CNN. Thirdly, the learning algorithm is summarized from the optimization algorithm and fusion algorithm. In optimization algorithm, it combs the progress of the algorithm according to optimization purpose. In algorithm fusion, the improvement is summarized from five angles: input layer, convolution layer, down-sampling layer, full-connected layer and output layer. Finally, CNN is mapped into the medical image domain, and it is combined with computer aided diagnosis to explore its application in medical images. It is a good summary for CNN and has positive significance for the development of CNN.
It is a significant challenge to improve the blood-brain barrier (BBB) permeability of central nervous system (CNS) drugs in their development. Compared with traditional pharmacokinetic property tests, machine learning techniques have been proven to effectively and cost-effectively predict the BBB permeability of CNS drugs. In this study, we introduce a high-performance BBB permeability prediction model named balanced-stacking-learning based BBB permeability predictor(BSL-B3PP). Firstly, we screen out the feature set that has a strong influence on BBB permeability from the perspective of medicinal chemistry background and machine learning respectively, and summarize the BBB positive(BBB+) quantification intervals. Then, a combination of resampling algorithms and stacking learning(SL) algorithm is used for predicting the BBB permeability of CNS drugs. The BSL-B3PP model is constructed based on a large-scale BBB database (B3DB). Experimental validation shows an area under curve (AUC) of 97.8% and a Matthews correlation coefficient (MCC) of 85.5%. This model demonstrates promising BBB permeability prediction capability, particularly for drugs that cannot penetrate the BBB, which helps reduce CNS drug development costs and accelerate the CNS drug development process.