ObjectiveTo analyze the associations between the choroidal vasculature and submacular fluid (SMF) in central serous chorioretinopathy (CSC). MethodsA retrospective study. A total of 29 CSC patients (31 eyes) with complete records who visited the Department of Ophthalmology in Peking University People's Hospital from August 1, 2021 to March 1, 2023 were included in this study. The patients were divided into complete absorption and incomplete absorption groups according to the status of SMF in the last visit. All the patients underwent ultra-widefield swept-source optical coherence tomography angiography (UWF SS-OCTA) with a scanning range of 24 mm × 20 mm. The UWF SS-OCTA images were automatically analyzed in 9 regions (superotemporal, superior, superonasal, temporal, central, nasal, inferotemporal, inferior, and inferonasal). Alterations of choroidal vasculature in the nine subfields after SMF absorption were described, including choroidal thickness (CT), flow density of choriocapillaris layer, vessel density of large choroidal vessel layer, three-dimensional choroidal vascularity index (CVI), the mean choroidal vessel volume (mCVV), and the mean choroidal stroma volume (mCSV). The relevant factors affecting the complete absorption of SMF were additionally evaluated. ResultsAt baseline, CT (Z=2.859, P=0.004), mCVV (t=2.514, P=0.018), and mCSV (Z=2.958, P=0.003) in the superotemporal region of the affected eyes in the incomplete absorption group were significantly higher than those in the complete absorption group. Compared with baseline, at the last visit, the proportion of asymmetric vortex veins in the complete absorption group was significantly decreased (χ2=6.000, P=0.014), CVI in the superotemporal, superonasal, temporal, central, nasal, inferotemporal, and inferonasal regions (t=-4.125, t=-3.247, Z=-3.213, t=-2.994, t=-3.417, t=-3.733, t=-3.795; P=0.001, 0.006, 0.001, 0.010, 0.005, 0.003, 0.002), the mCVV of 9 regions (t=-2.959, t=-2.537, t=-2.235, t=-3.260, t=-3.022, t=-2.796, t=-2.747, Z=-2.107, t=-2.935; P=0.011, 0.025, 0.044, 0.006, 0.010, 0.015, 0.017, 0.035, 0.012) were significantly decreased. Compared to the complete absorption group, the choroidal blood flow changes in the non-complete absorption group were more limited, and CT in the upper region increased significantly at the last follow-up (t=2.272, P=0.037). Multivariate logistic regression analysis revealed that baseline CT in the superotemporal region may be an independent risk factor affecting the complete absorption of SMF (odds ratio=0.981, 95% confidential interval 0.965-0.997, P=0.021). ConclusionsIn the process of SMF absorption in CSC, significant reductions of choroidal blood flow were found in the large choroidal vessel layer, and there may be a locally compensatory increase in CT. In addition, baseline CT in superotemporal region is an independent risk factor affecting SMF absorption.
ObjectiveTo observe the correlation between retinal capillary density and retinal thickness in the macula and spherical equivalent (SE) in school-age children. MethodsA cross-sectional study. From May to December 2022, 182 school-age children who visited the ophthalmology department of the First Affiliated Hospital of Zhengzhou University were included . There were 95 males and 87 females. The age ranged from 6 to 12 years, and the spherical equivalent (SE) was +0.50 to -6.00 D. They were divided into three groups based on the SE of the right eyes: 54 eyes in emmetropia group (+0.50≤SE<-0.50 D), 71 eyes in low myopia group (-0.50≤SE<-3.00 D), and 57 eyes in moderate myopia group (-3.00≤SE≤-6.00 D). The macular area of 6 mm×6 mm was scanned using swept-source optical coherence tomography angiography and was divided into three concentric rings centered on the fovea, including the macular central fovea (0-1 mm diameter), inner ring (1-3 mm diameter) and outer ring (3-6 mm diameter). The retinal thickness and blood flow density of superficial vascular plexus (SVP) and deep vascular plexus (DVP) in different zones within 6 mm of the macular area were measured. The relationships between SE and SVP, DVP and retinal thickness in each ring region were investigated by univariate and multivariate linear regression analyses, smooth curve fitting, and threshold effects. ResultsThere were significant differences in the SVP (F=6.64, 26.06, 22.69) and DVP (F=7.97, 25.01, 5.09) of macular central fovea, inner ring and outer ring among the emmetropia, low myopia and moderate myopia groups (P<0.05). Univariate linear regression analysis showed that the SVP (β=-0.56, -1.17, -0.79) and DVP (β=-1.03, -0.93, -0.45) of the three regions were positively correlated with SE (P<0.05). After smooth curve fitting, threshold effect analysis and multivariate linear regression analysis, the SVP and DVP in the macular central fovea were linearly positively correlated with SE (β=-0.91, -1.40; P<0.05), and SVP and DVP in the inner ring and outer ring showed an inverted U-shaped curve relationship with SE with the inflection (<3.00 D). When the SE was less than <3.00 D, the SVP and DVP in the inner ring and outer ring were positively correlated with SE (P<0.05). When the SE was higher than -3.00 D, except for the DVP in the inner ring region, the other parameters were negatively correlated with SE (P<0.05). There were significant differences in retinal thickness of the inner ring and outer ring (F=5.47, 16.36; P<0.05), and no significant difference in the macular central fovea among the emmetropia, low and moderate myopia groups (F=2.16, P>0.05). By using univariate and multivariate linear regression analyses, the retinal thickness in the inner ring and outer ring were negatively correlated with SE (β =1.99, 3.05; P<0.05). However, no correlation was found between retinal thickness and SE in the macular central fovea (β=-1.65, P>0.05). ConclusionsIn school-age children with SE between +0.50 D and -6.00 D, the retinal capillaries density of the macular central fovea gradually increase, and increase first and then decrease in the inner ring and outer ring with increasing SE. The retinal thickness of inner ring and outer ring gradually decrease and not change significantly in the macular central fovea.
ObjectiveTo observe the changes of chorioidal thickness (ChT) in patients with central serous chorioretinopathy (CSC) in different mode of vortic venous dilation. MethodsA prospective cross-sectional observational study. A total of 80 patients with 89 eyes (CSC group) diagnosed in Department of Ophthalmology, General Hospital of Central Theater Command from April to October 2023 were included in the study. Among them, 64 males had 71 eyes and 17 females had 18 eyes. A total of 15 healthy volunteers matched in age and sex were selected as the control group. Among them, 14 men had 26 eyes and one woman had two eyes. The macular region was examined by ultra-wide-angle scanning frequency source optical coherence tomography (OCTA) with BM400K BMizar made by TowardPi (Beijing) Medical Technology Co., LTD. Scanning rate 1 536 A scanning×1 280 B scanning, scanning range 24 mm×20 mm. The accompanying software delineated nine subfields (superotemporal, upper, superonasal, temporal, central, nasal, inferotemporal, lower, inferonasal regions) to record ChT. En-face OCTA mode was utilized to observe the anatomy and functional anastomosis of the vortex veins above and below the choroidal blood layer. Eyes in the CSC group were further categorized into upper-dominant, symmetrical, and lower-dominant groups based on the difference in vortex vein expansion shown in the choroidal layer of the en-face image, with 36, 35, and 18 eyes respectively. Statistical analysis included the use of independent samples t-test or Mann-Whitney test for comparison between two groups, one-way analysis of variance or Kruskal-Wallis H test for comparison between multiple groups, and the χ test or Fisher test for categorical variables. ResultsCompared with the control group, ChT in the CSC group was thickened in the foveal area and different areas of the macula, with the greatest difference in the fovea, and the differences were statistically significant (t=3.345, 5.018, 2.902, 4.667, 7.276, 3.307, 3.868, 4.795, 2.583; P<0.05). Compared with the ChT of the control group, there was no statistically significant difference in the superotemporal, region of the upper-dominant group (t=1.510, P>0.05); in other regions, the differences were statistically significant (t=3.207, 5.163, 2.526, 4.310, 6.285, 2.656, 3.812, 2.173; P<0.05). The differences in the foveal area and other areas in the symmetrical group were statistically significant (t=4.488, 5.554, 3.457, 5.314, 7.256, 3.507, 5.584, 6.019, 2.994; P<0.05). In the superotemporal, and superonasal, regions of the lower dominant group, the differences were not statistically significant (t=1.150, 1.465; P<0.05); in other regions, the differences were statistically significant (t=2.278, 4.168, 5.244, 2.783, 5.040, 3.432, 2.095; P<0.05). ConclusionThe dilated distribution of vortex veins on en-face ultra-wide-angle OCTA has a corresponding relationship with ChT. In eyes with CSC, the superior vortex vein drainage system may be the primary route for choroidal drainage.
Objective To observe the hemodynamic changes of posterior polar and peripheral retina and choroid in patients with rheogenic retinal detachment (RRD) after scleral buckling surgery. MethodsA prospective clinical observational study. A total of 25 eyes of 25 patients with RRD who underwent scleral buckle surgery in Tianjin Eye Hospital from February to April 2024 were included in the study. Among them, 10 were male and 15 were female. Age was 17-68 years old. All cases were monocular. The surgical eye and the contralateral healthy eye were divided into the affected eye group and the contralateral healthy eye group respectively. Best corrected visual acuity (BCVA), scanning source optical coherence tomography angiography (SS-OCTA), and axial length (AL) measurements were performed 3 months after surgery. SS-OCTA examination of macular area was performed by VG200 of Visual Microimaging (Henan) Technology Co., LTD. Scanning range 21 mm×26 mm. According to the partitioning method of the early treatment group of glycosuria retinopathy, the retina within 21 mm of the macular fovea was divided into concentric circles with the macular fovea as the center and diameters of 1-3, 3-6, 6-12, 12-21 mm, respectively. The built-in software of the device was used to record the central area (12 mm×12 mm in the fovea of the macula) and the peripheral area (12-21 mm range) retinal superficial capillary plexus (SCP), deep capillary plexus (DCP), radial peripapillary capillaries (RPC) blood density and choroidal vascular index (CVI), choroidal vascular volume (CVV), and 1-3, 3-6, 6-12, 12-21 mm above concentric circles (S), nasal side (N), temporal side (T), and lower side (I) SCP, DCP, and RPC blood flow density. Quantitative data between the two groups were compared by independent sample t test or Wilcoxon signed rank test. The correlation between retinal and choroid blood flow parameters and postoperative BCVA was analyzed by Spearman correlation analysis. ResultsCompared with the opposite healthy eye group, SCP blood density in the central area (Z=-4.372), DCP blood density in the central area (Z=-2.829), and CVI in the peripheral area (Z=-2.138) were decreased in the affected eye group, and the differences were statistically significant (P<0.05). SCP: in the affected eye group, the blood flow density in T3-6 mm, T6-12 mm, N6-12 mm and T12-21 mm regions decreased, while the blood flow density in I6-12 mm regions increased, with statistical significance (P<0.05). DCP: blood flow density in S6-12 mm, I6-12 mm, S12-21 mm and I12-21 mm regions decreased significantly, and the differences were statistically significant (P<0.05). RPC: blood flow density decreased significantly in T6-12 mm and I12-21 mm, and the differences were statistically significant (P<0.05). CVI: T6-12 mm, S12-21 mm, T12-21 mm, I12-21 mm significantly decreased, and T1-3 mm, S12-21 mm significantly increased, the differences were statistically significant (P<0.05). Correlation analysis showed that AL growth was positively correlated with CVV in central region (r=0.408, P=0.040). The number of pad pressure was negatively correlated with the blood density of central DCP (r=-0.422, P=0.030). ConclusionsAfter scleral buckling operation, the blood flow density and choroidal blood flow parameters in RRD affected eyes were lower than those in contralateral healthy eyes in some areas. The increase of AL was positively correlated with CVV in the central region, and the wider the range of pad pressure, the worse the recovery of DCP blood density.
Objective To evaluate the application value of optical coherence tomography angiography (OCTA) in obstructive sleep apnea syndrome (OSAS). Methods A comprehensive search of both domestic and international databases was conducted to identify clinical studies on the use of OCTA in OSAS, from the establishment of the databases to May 2024. A meta-analysis was performed using Revman 5.4 software. Results A total of 134 studies were initially identified, with 14 studies meeting the inclusion criteria, encompassing 999 subjects (739 in the OSAS group and 260 in the healthy group). Meta-analysis results indicated that the superficial capillary plexus (SCP) density in the fovea (MD=–2.05, 95%CI –3.75 to –0.35, P=0.02) and parafovea (MD=–1.56, 95%CI –2.44 to –0.68, P=0.000 5) was significantly lower in the OSAS group compared with the healthy group. In the mild to moderate OSAS group, SCP density was significantly lower in the fovea (MD=–2.41, 95%CI –4.32 to –0.49, P=0.01), parafovea (MD=–1.17, 95%CI –2.01 to –0.32, P=0.007), and perifovea (MD=–1.73, 95%CI –2.69 to –0.77, P=0.000 4) compared with the healthy group. In the severe OSAS group, SCP density in the perifovea (MD=–1.33, 95%CI –2.53 to –0.13, P=0.03) was significantly lower than that of the healthy group. SCP density in the whole area (MD=0.36, 95%CI 0.05 to 0.68, P=0.02) was significantly higher in the mild to moderate OSAS group compared with the severe OSAS group. In the deep capillary plexus (DCP) density, the OSAS group showed significantly lower densities in the whole area (MD=–2.16, 95%CI –3.51 to –0.81, P=0.002), fovea (MD=–2.38, 95%CI –4.38 to –0.37, P=0.02), and parafovea (MD=–2.33, 95%CI –3.93 to –0.73, P=0.004) compared with the healthy group. The mild to moderate OSAS group also showed significantly lower densities in the whole area (MD=–2.02, 95%CI –3.33 to –0.72, P=0.002) and parafovea (MD=–1.65, 95%CI –3.04 to –0.26, P=0.02) compared with the healthy group. The severe OSAS group had significantly lower DCP density in the whole area (MD=–2.26, 95%CI –3.85 to –0.66, P=0.006) and parafovea (MD=–1.47, 95%CI –2.31 to –0.62, P=0.000 7) compared with the healthy group. DCP density in the whole area (MD=0.54, 95%CI 0.02 to 1.07, P=0.04) was significantly higher in the mild to moderate OSAS group compared with the severe OSAS group. Regarding the retinal nerve fiber layer (RNFL) thickness, the inferior quadrant (MD=4.01, 95%CI 0.69 to 7.32, P=0.02) and temporal quadrant (MD=4.35, 95%CI 1.88 to 6.82, P=0.000 6) were significantly thicker in the mild to moderate OSAS group compared with the severe OSAS group. In terms of the foveal avascular zone (FAZ) area, the severe OSAS group showed a significantly larger FAZ area (MD=0.06, 95%CI 0.03 to 0.08, P<0.000 01) compared with the healthy group. Conclusion OCTA-related ocular biomarkers may be associated with the occurrence and progression of OSAS and have potential applications in the diagnosis and treatment of OSAS.