1. |
Spinal cord injury (SCI) 2016 facts and figures at a glance. Spinal cord injury (SCI) 2016 facts and figures at a glance. J Spinal Cord Med, Jul, 2016, 39(4): 493-494.
|
2. |
Lu L L, Liu Y J, Yang S G, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 2006, 91(8): 1017-1026.
|
3. |
Zhou Y, Zhang X, Xue H, et al. Autologous mesenchymal stem cell transplantation in multiple sclerosis: A meta-analysis. Stem Cells Int, 2019, 2019: 8536785.
|
4. |
Pan K, Deng L, Chen P, et al. Safety and feasibility of repeated intrathecal allogeneic bone marrow-derived mesenchymal stromal cells in patients with neurological diseases. Stem Cells Int, 2019, 2019: 8421281.
|
5. |
Oliveira A G, Gonçalves M, Ferreira H, et al. Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Mult Scler Relat Disord, 2019, 38: 101860.
|
6. |
Hedayatzadeh M, Tehranipour M, Kobravi H R. Motor neuron recovery in rats after incomplete spinal cord injury using intra-spinal electrical stimulation and stem cell transfusion: A prelude to human applications. Medical Science, 2020, 24(102): 706-716.
|
7. |
Lin L, Lin H, Bai S, et al. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration. Neurochem Int, 2018, 115: 80-84.
|
8. |
Muniswami D M, Kanthakumar P, Kanakasabapathy I, et al. Motor recovery after transplantation of bone marrow mesenchymal stem cells in rat models of spinal cord injury. Ann Neurosci, 2019, 25(3): 126-140.
|
9. |
Chen S, Yi M, Zhou G, et al. Abdominal aortic transplantation of bone marrow mesenchymal stem cells regulates the expression of ciliary neurotrophic factor and inflammatory cytokines in a rat model of spinal cord ischemia-reperfusion injury. Med Sci Monit, 2019, 25: 1960-1969.
|
10. |
苟杨, 刘丹彦, 刘金凤, 等. 骨髓间充质干细胞移植对急性脊髓损伤脱髓鞘病变的保护作用. 生物工程学报, 2018, 34(5): 761-776.
|
11. |
Li H, Wang C, He T, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics, 2019, 9(7): 2017-2035.
|
12. |
Sharma A, Sane H, Gokulchandran N, et al. Intrathecal transplantation of autologous bone marrow mononuclear cells in patients with sub-acute and chronic spinal cord injury: An open-label study. Int J Health Sci (Qassim), 2020, 14(2): 24-32.
|
13. |
Yousefifard M, Nasirinezhad F, Shardi Manaheji H, et al. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther, 2016, 7: 36.
|
14. |
Vymetalova L, Kucirkova T, Knopfova L, et al. Large-scale automated hollow-fiber bioreactor expansion of umbilical cord-derived human mesenchymal stromal cells for neurological disorders. Neurochem Res, 2020, 45(1): 204-214.
|
15. |
Kim Y, Jo S H, Kim W H, et al. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther, 2015, 6: 229.
|
16. |
Khan I U, Yoon Y, Choi K U, et al. Therapeutic effects of intravenous injection of fresh and frozen thawed HO-1-overexpressed Ad-MSCs in dogs with acute spinal cord injury. Stem Cells Int, 2019, 2019: 8537541.
|
17. |
Kokai L E, Marra K, Rubin J P. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res, 2014, 163(4): 399-408.
|
18. |
Maqueda A, Rodriguez F J. Efficacy of human HC016 cell transplants on neuroprotection and functional recovery in a rat model of acute spinal cord injury. J Tissue Eng Regen Med, 2020, 14(2): 319-333.
|
19. |
Barberini D J, Aleman M, Aristizabal F, et al. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res Ther, 2018, 9(1): 96.
|
20. |
Bydon M, Dietz A B, Goncalves S, et al. CELLTOP clinical trial: First report from a phase 1 trial of autologous adipose tissue-derived mesenchymal stem cells in the treatment of paralysis due to traumatic spinal cord injury. Mayo Clin Proc, 2020, 95(2): 406-414.
|
21. |
Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev, 2007, 59(4-5): 207-233.
|
22. |
Hejcl A, Lesný P, Prádný M, et al. Biocompatible hydrogels in spinal cord injury repair. Physiol Res, 2008, 57(Suppl 3): S121-S132.
|
23. |
Mukhamedshina Y O, Akhmetzyanova E R, Kostennikov A A, et al. Adipose-derived mesenchymal stem cell application combined with fibrin matrix promotes structural and functional recovery following spinal cord injury in rats. Front Pharmacol, 2018, 9: 343.
|
24. |
Cowman M K, Lee H G, Schwertfeger K L, et al. The content and size of hyaluronan in biological fluids and tissues. Front Immunol, 2015, 6: 261.
|
25. |
Li L M, Huang L L, Jiang X C, et al. Transplantation of BDNF gene recombinant mesenchymal stem cells and adhesive peptide-modified hydrogel scaffold for spinal cord repair. Curr Gene Ther, 2018, 18(1): 29-39.
|
26. |
Zaviskova K, Tukmachev D, Dubisova J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. J Biomed Mater Res A, 2018, 106(4): 1129-1140.
|
27. |
Li L, Xiao B, Mu J, et al. A MnO2 nanoparticle-dotted hydrogel promotes spinal cord repair via regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano, 2019, 13(12): 14283-14293.
|
28. |
Wang L S, Chung J E, Chan P P, et al. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 2010, 31(6): 1148-1157.
|
29. |
Horne M K, Nisbet D R, Forsythe J S, et al. Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev, 2010, 19(6): 843-852.
|
30. |
Hejčl A, Lesný P, Přádný M, et al. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. J Mater Sci Mater Med, 2009, 20(7): 1571-1577.
|
31. |
Kubinová S, Horák D, Kozubenko N, et al. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials, 2010, 31(23): 5966-5975.
|
32. |
Kubinová S, Horák D, Hejčl A, et al. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. J Biomed Mater Res A, 2011, 99(4): 618-629.
|
33. |
Hejčl A, Růžička J, ProkS V, et al. Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection. J Mater Sci Mater Med, 2018, 29(7): 89.
|
34. |
Yang E Z, Zhang G W, Xu J G, et al. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol Sin, 2017, 38(5): 623-637.
|
35. |
Han I B, Thakor D K, Ropper A E, et al. Physical impacts of PLGA scaffolding on hMSCs: Recovery neurobiology insight for implant design to treat spinal cord injury. Exp Neurol, 2019, 320: 112980.
|
36. |
Perale G, Giordano C, Bianco F, et al. Hydrogel for cell housing in the brain and in the spinal cord. Int J Artif Organs, 2011, 34(3): 295-303.
|
37. |
Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces, 2018, 10(21): 17742-17755.
|
38. |
Chen C M, Tang J C, Gu Y, et al. Bioinspired hydrogel electrospun fibers for spinal cord regeneration. Adv Funct Mater, 2019, 29(4): 1806899.
|
39. |
Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett, 2020, 20(6): 4298-4305.
|
40. |
Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med, 2019, 25(2): 263-269.
|