1. |
Zhang Yangsong, Yin Erwei, Li Fali, et al. Hierarchical feature fusion framework for frequency recognition in SSVEP-based BCIs. Neural Netw, 2019, 119: 1-9.
|
2. |
Chabuda A, Dovgialo M, Duszyk A, et al. Successful BCI communication via high-frequency SSVEP or visual, audio or tactile P300 in 30 tested volunteers. Acta Neurobiol Exp, 2019, 79(4): 421-431.
|
3. |
Ge Sheng, Jiang Yichuan, Zhang Mingming, et al. SSVEP-based brain-computer interface with a limited number of frequencies based on dual-frequency biased coding. IEEE T Neur Sys Reh, 2021, 29: 760-769.
|
4. |
Zhao Xi, Wang Zhenyu, Zhang Min, et al. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision. J Neural Eng, 2021, 18(5): 056021.
|
5. |
Lee M-H, Kwon O-Y, Kim Y-J, et al. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Gigascience, 2019, 8(5): giz002.
|
6. |
Chen Yonghao, Yang Chen, Ye Xiaochen, et al. Implementing a calibration-free SSVEP-based BCI system with 160 targets. J Neural Eng, 2021, 18(4): 046094.
|
7. |
Floriano A, Delisle-R D, Diez P F, et al. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on depth-of-field. Comput Meth Prog Bio, 2020, 184: 105271.
|
8. |
Floriano A, Carmona V L, Diez P F, et al. A study of SSVEP from below-the-hairline areas in low-, medium-, and high-frequency ranges. Res Biomed Eng, 2019, 35(1): 71-76.
|
9. |
Peng Yufan, Wong C M, Wang Ze, et al. Fatigue detection in SSVEP-BCIs based on wavelet entropy of EEG. IEEE Access, 2021, 9: 114905-114913.
|
10. |
Ehlers J, Lueth T, Graeser A. High frequency steady-state visual evoked potentials: an empirical study on re-test stability for brain-computer interface usage// Proceedings of the 3rd International Conference on Computer-Human Interaction Research and Applications. CHIRA: Science and Technology Publications, 2019: 164-170.
|
11. |
Chen Xiaogang, Zhao Bing, Wang Yijun, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng, 2019, 16(2): 026012.
|
12. |
Li A, Alimanov K, Fazli S, et al. Towards paradigm-independent brain computer interfaces// Proceedings of the 2020 8th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2020: 1-6.
|
13. |
Xu Lichao, Xu Minpeng, Jung T-P, et al. Review of brain encoding and decoding mechanisms for EEG-based brain–computer interface. Cogn Neurodyn, 2021, 15(4): 569-584.
|
14. |
Abdelnabi S, Huang Xuelin, Bulling A. Towards high-frequency SSVEP-based target discrimination with an extended alphanumeric keyboard// Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari: IEEE, 2019: 4181-4186.
|
15. |
Won D O, Zhang Haihong, Guan Cuntai, et al. A BCI speller based on SSVEP using high frequency stimuli design// Proceedings of the IEEE International Conference on Systems. San Diego: IEEE, 2014: 1068-1071.
|
16. |
Chen Xiaogang, Chen Zhikai, Gao Shangkai, et al. A high-ITR SSVEP-based BCI speller. Brain-Comput Interfa, 2014, 1(3-4): 181-191.
|
17. |
Saboor A, Benda M, Rezeika A, et al. Mesh of SSVEP-based BCI and eye-tracker for use of higher frequency stimuli and lower number of EEG channels// Proceedings of the 16th International Conference on Frontiers of Information Technology (FIT). Islamabad: IEEE, 2018: 99-104.
|
18. |
Chabuda A, Durka P, Zygierewicz J. High frequency SSVEP-BCI with hardware stimuli control and phase-synchronized comb filter. IEEE T Neur Sys Reh, 2018, 26(2): 344-352.
|
19. |
Abiri R, Borhani S, Sellers E W, et al. A comprehensive review of EEG-based brain–computer interface paradigms. J Neural Eng, 2019, 16(1): 011001.
|
20. |
Mao Xiaoqian, Li Wei, Hu Hong, et al. Improve the classification efficiency of high-frequency phase-tagged SSVEP by a recursive Bayesian-based approach. IEEE T Neur Sys Reh, 2020, 28(3): 561-572.
|
21. |
Tsoneva T, Garcia-Molina G, Desain P. SSVEP phase synchronies and propagation during repetitive visual stimulation at high frequencies. Sci Rep, 2021, 11(1): 4975.
|
22. |
Zhu Danhua, Garcia-Molina G, Mihajlović V, et al. Online BCI implementation of high-frequency phase modulated visual stimuli// Proceedings of the International Conference on Universal Access in Human-Computer Interaction. Hangzhou: Springer, 2011: 645-654.
|
23. |
Tong Jijun, Zhu Danhua. Multi-phase cycle coding for SSVEP based brain-computer interfaces. Biomed Eng Online, 2015, 14(1): 1-13.
|
24. |
Jiang Lu, Pei Weihua, Wang Yijun. A user-friendly SSVEP-based BCI using imperceptible phase-coded flickers at 60Hz. China Commun, 2022, 19(2): 1-14.
|
25. |
Hu Hong, Zhao Jing, Li Hongbo, et al. Telepresence control of humanoid robot via high-frequency phase-tagged SSVEP stimuli// Proceedings of the IEEE International Workshop on Advanced Motion Control. Auckland: IEEE, 2016: 214-219.
|
26. |
Keihani A, Shirzhiyan Z, Farahi M, et al. Use of sine shaped high-frequency rhythmic visual stimuli patterns for SSVEP response analysis and fatigue rate evaluation in normal subjects. Front Hum Neurosci, 2018, 12: 201.
|
27. |
Ajami S, Mahnam A, Abootalebi V. Development of a practical high frequency brain-computer interface based on steady-state visual evoked potentials using a single channel of EEG. Biocybern Biomed Eng, 2018, 38(1): 106-114.
|
28. |
Ming Gege, Wang Yijun, Pei Weihua, et al. Optimizing spatial contrast of a new checkerboard stimulus for eliciting robust SSVEPs// Proceedings of the 9th IEEE/EMBS International Conference on Neural Engineering (NER). San Francisco: IEEE, 2019: 175-178.
|
29. |
Ming Gege, Pei Weihua, Chen Hongda, et al. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. J Neural Eng, 2021, 18(5): 056046.
|
30. |
Liang Liyan, Yang Chen, Wang Yijun, et al. High-frequency SSVEP stimulation paradigm based on dual frequency modulation// Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 6184-6187.
|
31. |
Yue Liang, Xiao Xiaolin, Xu Minpeng, et al. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials// Proceedings of the 42nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC). Montreal: IEEE, 2020: 3090-3093.
|
32. |
Materka A, Byczyk M, Poryzala P. A virtual keypad based on alternate half-field stimulated visual evoked potentials// 2007 International Symposium on Information Technology Convergence (ISITC 2007). Jeonju: IEEE, 2007: 296-300.
|
33. |
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B, 1996, 58(1): 267-288.
|
34. |
Lin Zhonglin, Zhang Changshui, Wu Wei, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans BioMed Eng, 2007, 54(6): 1172-1176.
|
35. |
Wong C M, Wang Boyu, Wang Ze, et al. Spatial filtering in SSVEP-based BCIs: Unified framework and new improvements. IEEE Trans BioMed Eng, 2020, 67(11): 3057-3072.
|
36. |
Nakanishi M, Wang Yijun, Chen Xiaogang, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2018, 65(1): 104-112.
|
37. |
Xu Minpeng, Xiao Xiaolin, Wang Yijun, et al. A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng, 2018, 65(5): 1166-1175.
|
38. |
Haque I R I, Neubert J. Deep learning approaches to biomedical image segmentation. Inf Med Unlocked, 2020, 18: 100297.
|
39. |
Monga V, Li Yuelong, Eldar Y C. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Proc Mag, 2021, 38(2): 18-44.
|
40. |
van den Berg B, van Donkelaar S, Alimardani M. Inner speech classification using EEG signals: a deep learning approach// Proceedings of the 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS). Magdeburg: IEEE, 2021: 1-4.
|
41. |
Armengol-Urpi A, Salazar-Gómez A F, Sarma S E. Brainwave-augmented eye tracker: high-frequency SSVEPs improves camera-based eye tracking accuracy// Proceedings of the 27th International Conference on Intelligent User Interfaces. Helsinki: Association for Computing Machinery, 2022: 258-276.
|
42. |
Qin Ke, Wang Raofen, Zhang Yu. Filter bank-driven multivariate synchronization index for training-free SSVEP BCI. IEEE T Neur Sys Reh, 2021, 29: 934-943.
|
43. |
Hübner R, Foleis J H, Ruiz L B, et al. A brain-computer interface based on SSVEP that uses a high-frequency stimulus for decision-making// Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Melbourne: IEEE, 2021: 709-714.
|
44. |
Yang Chen, Li Xiang, Shi Nanlin, et al. Brain–computer interface research. Berlin: Springer, 2020: 87-105.
|
45. |
Hsu C-C, Yeh C-L, Lee W-K, et al. Extraction of high-frequency SSVEP for BCI control using iterative filtering based empirical mode decomposition. Biomed Signal Proces, 2020, 61: 102022.
|
46. |
Xu Minpeng, He Feng, Jung T-P, et al. Current challenges for the practical application of electroencephalography-based brain–computer interfaces. Engineering, 2021, 7(12): 1710-1712.
|
47. |
da Silva A D, da Cruz Júnior G, Júnior C G P. A fast and accurate SSVEP brain machine interface using dry electrodes and high frequency stimuli by employing ensemble learning. IEEE Lat Am T, 2020, 18(6): 1000-1007.
|
48. |
Chai X, Zhang Z, Guan K, et al. A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomed Signal Proces, 2020, 56: 101687.
|
49. |
Benda M, Genbler F, Stawicki P, et al. Custom-made monitor for easy high-frequency SSVEP stimulation// Proceedings of the International Work-Conference on Artificial Neural Networks. Gran Canaria: Springer, 2019: 382-393.
|