1. |
Ulz P, Perakis S, Zhou Q, et al. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat Commun, 2019, 10(1): 4666.
|
2. |
Nguyen H T, Khoa Huynh L A, Nguyen T V, et al. Multimodal analysis of ctDNA methylation and fragmentomic profiles enhances detection of nonmetastatic colorectal cancer. Future Oncol, 2022, 18(35): 3895-3912.
|
3. |
Benson A B, Venook A P, Al-Hawary M M, et al. Colon Cancer, Version 2. 2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
|
4. |
Kasi P M, Fehringer G, Taniguchi H, et al. Impact of circulating tumor DNA-based detection of molecular residual disease on the conduct and design of clinical trials for solid tumors. JCO Precis Oncol, 2022, 6: e2100181.
|
5. |
Tie J, Cohen J D, Wang Y, et al. Circulating tumor dna analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol, 2019, 5(12): 1710-1717.
|
6. |
Christensen E, Birkenkamp-Demtroder K, Sethi H, et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol, 2019, 37(18): 1547-1557.
|
7. |
Pang S, Li H, Xu S, et al. Circulating tumour cells at baseline and late phase of treatment provide prognostic value in breast cancer. Sci Rep, 2021, 11(1): 13441.
|
8. |
Chaudhuri A A, Chabon J J, Lovejoy A F, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov, 2017, 7(12): 1394-1403.
|
9. |
Moding E J, Nabet B Y, Alizadeh A A, et al. Detecting liquid remnants of solid tumors: circulating tumor dna minimal residual disease. Cancer Discov, 2021, 11(12): 2968-2986.
|
10. |
Avanzini S, Kurtz D M, Chabon J J, et al. A mathematical model of ctDNA shedding predicts tumor detection size. Sci Adv, 2020, 6(50): eabc4308.
|
11. |
Zviran A, Schulman R C, Shah M, et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat Med, 2020, 26(7): 1114-1124.
|
12. |
Ma X, Shao Y, Tian L, et al. Analysis of error profiles in deep next-generation sequencing data. Genome Biol, 2019, 20(1): 50.
|
13. |
Xia L, Mei J, Kang R, et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: A prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res, 2022, 28(15): 3308-3317.
|
14. |
Wan J C M, Heider K, Gale D, et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci Transl Med, 2020, 12(548): eaaz8084.
|
15. |
Abelson S, Zeng A G X, Nofech-Mozes I, et al. Integration of intra-sample contextual error modeling for improved detection of somatic mutations from deep sequencing. Sci Adv, 2020, 6(50): eabe3722.
|
16. |
Newman A M, Bratman S V, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med, 2014, 20(5): 548-554.
|
17. |
Newman A M, Lovejoy A F, Klass D M, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol, 2016, 34(5): 547-555.
|
18. |
Qiu B, Guo W, Zhang F, et al. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun, 2021, 12(1): 6770.
|
19. |
Taniguchi H, Nakamura Y, Kotani D, et al. CIRCULATE-Japan: Circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci, 2021, 112(7): 2915-2920.
|