1. |
Shi W, Jiang Y, Wu T, et al. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther, 2023, 25: 174-185.
|
2. |
Stahl A, Yang YP. Regenerative approaches for the treatment of large bone defects. Tissue Eng Part B Rev, 2021, 27(6): 539-547.
|
3. |
Tang G, Liu Z, Liu Y, et al. Recent trends in the development of bone regenerative biomaterials. Front Cell Dev Biol, 2021, 9: 665813. doi: 10.3389/fcell.2021.665813.
|
4. |
Bunpetch V, Zhang ZY, Zhang X, et al. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials, 2019, 196: 67-79.
|
5. |
Ai Y, Dai F, Li W, et al. Photo-crosslinked bioactive BG/BMSCs@GelMA hydrogels for bone-defect repairs. Mater Today Bio, 2023, 23: 100882. doi: 10.1016/j.mtbio.2023.100882.
|
6. |
Lei Y, Wang Y, Shen J, et al. Stem cell-recruiting injectable microgels for repairing osteoarthritis. Advanced Functional Material, 2021, 31(48): 2105084. doi: 10.1002/adfm.202105084.
|
7. |
Kim KD, Lee S, Kim M, et al. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells. Chemical Engineering Journal, 2021, 406: 127080. doi: 10.1016/j.cej.2020.127080.
|
8. |
Julien A, Kanagalingam A, Martínez-Sarrà E, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat Commun, 2021, 12(1): 2860. doi: 10.1038/s41467-021-22842-5.
|
9. |
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nature biotechnology, 2014, 32(3): 252-260.
|
10. |
Cao S, Zhao Y, Hu Y, et al. New perspectives: In-situ tissue engineering for bone repair scaffold. Composites Part B: Engineering, 2020, 202: 108445. doi: 10.1016/j.compositesb.2020.108445.
|
11. |
Wu C, Yan J, Ge C, et al. Macrophage membrane-reversibly camouflaged nanotherapeutics accelerate fracture healing by fostering MSCs recruitment and osteogenic differentiation. J Nanobiotechnology, 2024, 22(1): 411. doi: 10.1186/s12951-024-02679-y.
|
12. |
Eissa S, Zourob M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep, 2017, 7(1): 1016. doi: 10.1038/s41598-017-01226-0.
|
13. |
Xu Z, Wu J, Gong P, et al. Accelerate wound healing by microscale gel array patch encapsulating defined SDF-1α gradient. J Control Release, 2023, 358: 1-12.
|
14. |
Wang H, Chang X, Ma Q, et al. Bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration. Bioact Mater, 2022, 21: 324-339.
|
15. |
Chen L, Yu C, Xiong Y, et al. Multifunctional hydrogel enhances bone regeneration through sustained release of stromal cell-derived factor-1α and exosomes. Bioact Mater, 2022, 25: 460-471.
|
16. |
Gong JS, Zhu GQ, Zhang Y, et al. Aptamer-functionalized hydrogels promote bone healing by selectively recruiting endogenous bone marrow mesenchymal stem cells. Mater Today Bio, 2023, 23: 100854. doi: 10.1016/j.mtbio.2023.100854.
|
17. |
Meng L, Zhao Y, Bu W, et al. Bone mesenchymal stem cells are recruited via CXCL8-CXCR2 and promote EMT through TGF-β signal pathways in oral squamous carcinoma. Cell Prolif, 2020, 53(8): e12859. doi: 10.1111/cpr.12859.
|
18. |
Zeng J, Xiong S, Zhou J, et al. Hollow hydroxyapatite microspheres loaded with rhCXCL13 to recruit BMSC for osteogenesis and synergetic angiogenesis to promote bone regeneration in bone defects. Int J Nanomedicine, 2023, 18: 3509-3534.
|
19. |
Liu S, Liu Y, Jiang L, et al. Recombinant human BMP-2 accelerates the migration of bone marrow mesenchymal stem cells via the CDC42/PAK1/LIMK1 pathway in vitro and in vivo. Biomater Sci, 2018, 7(1): 362-372.
|
20. |
Wu J, Cao L, Liu Y, et al. Functionalization of silk fibroin electrospun scaffolds via bmsc affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces, 2019, 11(9): 8878-8895.
|
21. |
Zhang W, Zhang Y, Li X, et al. Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Mater Today Bio, 2022, 14: 100251. doi: 10.1016/j.mtbio.2022.100251.
|
22. |
Bai J, Ge G, Wang Q, et al. Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration. Research (Wash D C), 2022, 2022: 9823784. doi: 10.34133/2022/9823784.
|
23. |
Zhang W, Sun T, Zhang J, et al. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton’s jelly based on stem cell recruitment and its application in bone tissue engineering. Mater Today Bio, 2022, 18: 100528. doi: 10.1016/j.mtbio.2022.100528.
|
24. |
Nowakowski GS, Dooner MS, Valinski HM, et al. A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells, 2004, 22(6): 1030-1038.
|
25. |
Huang B, Li P, Chen M, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology, 2022, 20(1): 25. doi: 10.1186/s12951-021-01230-7.
|
26. |
Vandamme D, Landuyt B, Luyten W, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol, 2012, 280(1): 22-35.
|
27. |
Zhu Y, Lu F, Zhang G, et al. Overview of signal transduction between LL37 and bone marrow-derived MSCs. J Mol Histol, 2022, 53(2): 149-157.
|
28. |
Ma S, Wang C, Dong Y, et al. Microsphere-gel composite system with mesenchymal stem cell recruitment, antibacterial, and immunomodulatory properties promote bone regeneration via sequential release of LL37 and W9 peptides. ACS Appl Mater Interfaces, 2022, 14(34): 38525-38540.
|
29. |
Chen X, Zhang L, Shao X, et al. Specific clearance of senescent synoviocytes suppresses the development of osteoarthritis based on aptamer-functionalized targeted drug delivery system. Advanced Functional Materials, 2022, 32(17): 2109460. https://doi.org/10.1002/adfm.202109460.
|
30. |
Hou Z, Meyer S, Propson NE, et al. Characterization and target identification of a DNA aptamer that labels pluripotent stem cells. Cell Res, 2015, 25(3): 390-393.
|
31. |
Miao Y, Liu X, Luo J, et al. Double-network dna macroporous hydrogel enables aptamer-directed cell recruitment to accelerate bone healing. Adv Sci (Weinh), 2024, 11(1): e2303637. doi: 10.1002/advs.202303637.
|
32. |
Wang Z, Lao A, Huang X, et al. Apt-19s-functionalized 3D-printed mesoporous bioactive glass scaffold promotes bmsc recruitment in bone regeneration via SDF-1α/CXCR4 axis and MAPK signaling. Advanced Functional Materials, 2024. https://doi.org/10.1002/adfm.202316675.
|
33. |
Zhou C, Xu AT, Wang DD, et al. The effects of Sr-incorporated micro/nano rough titanium surface on rBMSC migration and osteogenic differentiation for rapid osteointegration. Biomater Sci, 2018, 6(7): 1946-1961.
|
34. |
Cao B, Li Y, Yang T, et al. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev, 2019, 145: 73-95.
|
35. |
Sartorius R, D’Apice L, Prisco A, et al. Arming filamentous bacteriophage, a nature-made nanoparticle, for new vaccine and immunotherapeutic strategies. Pharmaceutics, 2019, 11(9): 437. doi: 10.3390/pharmaceutics11090437.
|
36. |
Wang X, Liang Y, Li J, et al. Artificial periosteum promotes bone regeneration through synergistic immune regulation of aligned fibers and BMSC-recruiting phages. Acta Biomater, 2024, 180: 262-278.
|
37. |
Wang X, Zhu X, Wang D, et al. Identification of a specific phage as growth factor alternative promoting the recruitment and differentiation of MSCs in bone tissue regeneration. ACS Biomater Sci Eng, 2023, 9(5): 2426-2437.
|
38. |
Kong D, Wang Q, Huang J, et al. A biomimetic structural material with adjustable mechanical property for bone tissue engineering. Advanced Functional Materials, 2024, 34(8): 2305412. doi: 10.1002/adfm.202305412.
|
39. |
Chen Z, Lv Y. Uninterrupted dynamic stiffening microenvironment enhances the paracrine function of mesenchymal stem cells for vascularization through chromatin remodeling. Materials & Design, 2022, 224(1): 11328. doi: 10.1016/j.matdes.2022.111328.
|
40. |
Wang J, Li J, Lu Y, et al. Incorporation of stromal cell-derived factor-1α in three-dimensional hydroxyapatite/polyacrylonitrile composite scaffolds for bone regeneration. ACS Biomater Sci Eng, 2019, 5(2): 911-921.
|
41. |
Kuang L, Ma X, Ma Y, et al. Self-assembled injectable nanocomposite hydrogels coordinated by in situ generated cap nanoparticles for bone regeneration. ACS Appl Mater Interfaces, 2019, 11(19): 17234-17246.
|
42. |
Zhang X, Li Q, Li L, et al. Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano, 2023, 17(7): 6466-6479.
|
43. |
Mao Y, Chen Y, Li W, et al. Physiology-inspired multilayer nanofibrous membranes modulating endogenous stem cell recruitment and osteo-differentiation for staged bone regeneration. Adv Healthc Mater, 2022, 11(21): e2201457. doi: 10.1002/adhm.202201457.
|