1. |
中国医师协会心血管外科分会大血管外科专业委员会. 主动脉夹层诊断与治疗规范中国专家共识. 中华胸心血管外科杂志, 2017, 33(11): 641-654.
|
2. |
Ren W, Wang ZW, Wu ZY, et al. Corrigendum to "JAK2/STAT3 pathway was associated with the protective effects of IL-22 on aortic dissection with acute lung injury". Dis Markers, 2019, 2019: 1901626.
|
3. |
Pan X, Lu J, Cheng W, et al. Independent factors related to preoperative acute lung injury in 130 adults undergoing Stanford type-A acute aortic dissection surgery: A single-center cross-sectional clinical study. J Thorac Dis, 2018, 10(7): 4413-4423.
|
4. |
Guo Z, Yang Y, Zhao M, et al. Preoperative hypoxemia in patients with type A acute aortic dissection: A retrospective study on incidence, related factors and clinical significance. J Thorac Dis, 2019, 11(12): 5390-5397.
|
5. |
Ge HQ, Jiang Y, Jin QJ, et al. Nomogram for the prediction of postoperative hypoxemia in patients with acute aortic dissection. BMC Anesthesiol, 2018, 18(1): 146.
|
6. |
Hiraoka A, Suzuki K, Chikazawa G, et al. Adaptive servo-ventilation suppresses elevation of C-reactive protein and sympathetic activity in acute uncomplicated type B aortic dissection. Interact Cardiovasc Thorac Surg, 2017, 24(1): 27-33.
|
7. |
Kashiwagi Y, Komukai K, Suzuki K, et al. Predictors of oxygenation impairment in medical treatment for type B acute aortic dissection. Heart Vessels, 2018, 33(12): 1463-1470.
|
8. |
Gong M, Wu ZN, Xu SJ, et al. Increased risk for the development of postoperative severe hypoxemia in obese women with acute type A aortic dissection. J Cardiothorac Surg, 2019, 14(1): 81.
|
9. |
张欢欢, 杨玉金, 张加乐, 等. 急性主动脉夹层发生低氧血症患者危险因素的 Meta 分析. 中国现代医学杂志, 2018, 28(19): 67-74.
|
10. |
Wu ZY, Wang ZW, Wu HB, et al. Obesity is a risk factor for preoperative hypoxemia in Stanford A acute aortic dissection. Medicine (Baltimore), 2020, 99(11): e19186.
|
11. |
张明萌, 张斌, 饶敏腊, 等. 肥胖相关的部分脂肪因子研究进展. 中国医药, 2019, 14(6): 952-956.
|
12. |
何诚, 陶宁, 赵利. 老年急性主动脉夹层合并急性肺损伤的临床特征及其影响因素. 中国老年学杂志, 2019, 39(20): 4889-4891.
|
13. |
Liu N, Zhang W, Ma W, et al. Risk factors for hypoxemia following surgical repair of acute type A aortic dissection. Interact Cardiovasc Thorac Surg, 2017, 24(2): 251-256.
|
14. |
Gao Z, Pei X, He C, et al. Oxygenation impairment in patients with acute aortic dissection is associated with disorders of coagulation and fibrinolysis: A prospective observational study. J Thorac Dis, 2019, 11(4): 1190-1201.
|
15. |
Yamada Y, Tanno J, Nakano S, et al. Clinical implications of pleural effusion in patients with acute type B aortic dissection. Eur Heart J Acute Cardiovasc Care, 2016, 5(7): 72-81.
|
16. |
周楚芝, 王湘, 姜妮, 等. 急性 A 型主动脉夹层孙氏术后低氧血症的危险因素分析. 岭南心血管病杂志, 2017, 23(2): 165-170.
|
17. |
刘明娟, 刘婷珊, 邓康, 等. Stanford A 型急性主动脉夹层支架植入术后低氧血症的危险因素. 中华麻醉学杂志, 2019, 39(1): 121-122.
|
18. |
Wang XH, Zhang HP, Cao L, et al. The role of macrophages in aortic dissection. Front Physiol, 2020, 11: 54.
|
19. |
Wu Z, Ruan Y, Chang J, et al. AngiotensinⅡ is related to the acute aortic dissection complicated with lung injury through mediating the release of MMP9 from macrophages. Am J Transl Res, 2016, 8(3): 1426-1436.
|
20. |
Mori K, Tamune H, Tanaka H, et al. Admission values of D-dimer and C-reactive protein (CRP) predict the long-term outcomes in acute aortic dissection. Intern Med, 2016, 55(14): 1837-1843.
|
21. |
张鹏, 王永才, 张喜报, 等. 血清降钙素原、炎症细胞因子及超敏C−反应蛋白联合检测放射性肺炎合并肺部感染的诊断价值. 中华医院感染学杂志, 2017, 27(23): 5322-5324.
|
22. |
Lv H, Yu Z, Zheng Y, et al. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways. Int J Biol Sci, 2016, 12(1): 72-86.
|
23. |
Cheng L, Zhao Y, Qi D, et al. Wnt/β-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochem Biophys Res Commun, 2018, 495(2): 1890-1895.
|
24. |
贺宝臣. 外周血 Th17 细胞、降钙素原在急性 A 型主动脉夹层病人中的表达与急性肺损伤的关系. 实用老年医学, 2019, 33(4): 346-350.
|
25. |
Yuan SM, Yan SL, Wu N. Unusual aspects of cardiac myxoma. Anatol J Cardiol, 2017, 17(3): 241-247.
|
26. |
Yuan SM. Profiles and predictive values of interleukin-6 in aortic dissection: A review. Braz J Cardiovasc Surg, 2019, 34(5): 596-604.
|
27. |
黄相, 何黎, 王科科. 急性 A 型主动脉夹层血清白细胞介素-6、8 的变化及其与急性肺损伤的相关性. 中华胸心血管外科杂志, 2016, 32(11): 665-668.
|
28. |
成泽怡, 杨梦阳, 李雅茹, 等. 主动脉夹层生物标志物的研究进展. 心血管病学进展, 2019, 40(1): 49-53.
|
29. |
张丹, 申昌军. 急性 A 型主动脉夹层患者血清 D-二聚体、MMP-9 水平与急性肺损伤的相关性. 标记免疫分析与临床, 2019, 26(10): 1688-1691.
|
30. |
Poole LG, Massey VL, Siow DL, et al. Plasminogen activator inhibitor-1 is critical in alcohol-enhanced acute lung injury in mice. Am J Respir Cell Mol Biol, 2017, 57(3): 315-323.
|
31. |
Siti DL, Ma X. Predictors of acute lung injury in acute aortic dissection patients: A hospital-based retrospective study. J Am Coll Cardiol, 2018, 72(16): C185-C186.
|
32. |
石烽, 王志维, 吴红兵, 等. 杂交手术治疗 Stanford A 型主动脉夹层. 实用医学杂志, 2019, 35(13): 2175-2179.
|
33. |
Gao F, Zeng Q, Lin F, et al. Sandwich technique for endovascular repair of acute type A aortic dissection. J Endovasc Ther, 2017, 24(5): 647-653.
|
34. |
Luo Y, Che W, Zhao M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int J Mol Med, 2017, 39(2): 297-306.
|
35. |
Duan XZ, Xu ZY, Lu FL, et al. Inflammation is related to preoperative hypoxemia in patients with acute Stanford type A aortic dissection. J Thorac Dis, 2018, 10(3): 1628-1634.
|
36. |
Pan X, Lu J, Cheng W, et al. Pulmonary static inflation with 50% xenon attenuates decline in tissue factor in patients undergoing Stanford type A acute aortic dissection repair. J Thorac Dis, 2018, 10(7): 4368-4376.
|
37. |
Jin M, Yang YW, Pan XD, et al. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for Stanford type A acute aortic dissection. Medicine (Baltimore), 2017, 96(10): e6253.
|
38. |
Wu Z, Chang J, Ren W, et al. Bindarit reduces the incidence of acute aortic dissection complicated lung injury via modulating NF-κB pathway. Exp Ther Med, 2017, 14(3): 2613-2618.
|
39. |
Sadikot RT, Kolanjiyil AV, Kleinstreuer C, et al. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome. Biomed Hub, 2017, 2(2): 1-12.
|