- Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, P. R. China;
As a global disease, heart failure affects at least 26 million people, and its prevalence is still rising. Besides, the mortality rate and readmission rate remain high. Advanced heart failure is the terminal stage of various heart diseases, and often requires some treatments other than drug intervention, such as heart transplantation which is the gold standard for treatment of heart failure. However, limited by the number of donors, the number of heart transplants in the world has reached a bottleneck. There is a huge gap between the number of patients who need heart transplants and patients who get hearts for survival successfully in reality. With the exploration and development of mechanical circulation support devices for more than half a century, they have become a wonderful treatment for patients with advanced heart failure. This article will introduce the latest progress of mechanical circulatory support devices at home and abroad from the aspects of temporary and long-term devices.
Citation: LIU Zhou, ZHANG Hongjia. The progress of mechanical circulatory support devices. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2023, 30(9): 1355-1361. doi: 10.7507/1007-4848.202201028 Copy
1. | Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev, 2017, 3(1): 7-11. |
2. | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要. 中国循环杂志, 2021, 36(6): 521-545. |
3. | Khush KK, Cherikh WS, Chambers DC, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report-2019; focus theme: Donor and recipient size match. J Heart Lung Transplant, 2019, 38(10): 1056-1066. |
4. | Stewart GC, Mehra MR. A history of devices as an alternative to heart transplantation. Heart Fail Clin, 2014, 10(1 Suppl): S1-S12. |
5. | Vieira JL, Ventura HO, Mehra MR. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond. Prog Cardiovasc Dis, 2020, 63(5): 630-639. |
6. | McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 2021, 42(36): 3599-3726. |
7. | Combes A, Price S, Slutsky AS, et al. Temporary circulatory support for cardiogenic shock. Lancet, 2020, 396(10245): 199-212. |
8. | Hochman JS, Katz S. Back to the future in cardiogenic shock—Initial PCI of the culprit lesion only. N Engl J Med, 2017, 377(25): 2486-2488. |
9. | Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med, 2012, 367(14): 1287-1296. |
10. | Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK Ⅱ): Final 12 month results of a randomised, open-label trial. Lancet, 2013, 382(9905): 1638-1645. |
11. | Thiele H, Zeymer U, Thelemann N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: Long-term 6-year outcome of the randomized IABP-SHOCK Ⅱ trial. Circulation, 2019, 139(3): 395-403. |
12. | Burzotta F, Trani C, Doshi SN, et al. Impella ventricular support in clinical practice: Collaborative viewpoint from a European expert user group. Int J Cardiol, 2015, 201: 684-691. |
13. | Ouweneel DM, de Brabander J, Karami M, et al. Real-life use of left ventricular circulatory support with Impella in cardiogenic shock after acute myocardial infarction: 12 years AMC experience. Eur Heart J Acute Cardiovasc Care, 2019, 8(4): 338-349. |
14. | Maniuc O, Salinger T, Anders F, et al. Impella CP use in patients with non-ischaemic cardiogenic shock. ESC Heart Fail, 2019, 6(4): 863-866. |
15. | Karami M, den Uil CA, Ouweneel DM, et al. Mechanical circulatory support in cardiogenic shock from acute myocardial infarction: Impella CP/5. 0 versus ECMO. Eur Heart J Acute Cardiovasc Care, 2020, 9(2): 164-172. |
16. | Schiller P, Hellgren L, Vikholm P. Survival after refractory cardiogenic shock is comparable in patients with Impella and veno-arterial extracorporeal membrane oxygenation when adjusted for SAVE score. Eur Heart J Acute Cardiovasc Care, 2019, 8(4): 329-337. |
17. | Lemor A, Hosseini Dehkordi SH, Basir MB, et al. Impella versus extracorporeal membrane oxygenation for acute myocardial infarction cardiogenic shock. Cardiovasc Revasc Med, 2020, 21(12): 1465-1471. |
18. | Schrage B, Ibrahim K, Loehn T, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation, 2019, 139(10): 1249-1258. |
19. | Atkinson TM, Ohman EM, O'Neill WW, et al. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: An interventional perspective. JACC Cardiovasc Interv, 2016, 9(9): 871-883. |
20. | Tempelhof MW, Klein L, Cotts WG, et al. Clinical experience and patient outcomes associated with the TandemHeart percutaneous transseptal assist device among a heterogeneous patient population. ASAIO J, 2011, 57(4): 254-261. |
21. | Alli OO, Singh IM, Holmes DR, et al. Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: The Mayo Clinic experience. Catheter Cardiovasc Interv, 2012, 80(5): 728-734. |
22. | Großekettler L, Schmack B, Katus HA, et al. Case series of high-risk percutaneous coronary intervention with rotational atherectomy under short-term mechanical circulatory support with TandemHeart in the setting of acute myocardial infarction. Eur Heart J Case Rep, 2020, 4(4): 1-6. |
23. | Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J, 2005, 26(13): 1276-1283. |
24. | Burkhoff D, Cohen H, Brunckhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J, 2006, 152(3): 469.e1-e8. |
25. | Danial P, Hajage D, Nguyen LS, et al. Percutaneous versus surgical femoro-femoral veno-arterial ECMO: A propensity score matched study. Intensive Care Med, 2018, 44(12): 2153-2161. |
26. | Hill JD, O'Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med, 1972, 286(12): 629-634. |
27. | ECLS Registry Report 2021. pdf. |
28. | Cheng R, Hachamovitch R, Kittleson M, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1, 866 adult patients. Ann Thorac Surg, 2014, 97(2): 610-616. |
29. | Guglin M, Zucker MJ, Bazan VM, et al. Venoarterial ECMO for adults: JACC scientific expert panel. J Am Coll Cardiol, 2019, 73(6): 698-716. |
30. | Petroni T, Harrois A, Amour J, et al. Intra-aortic balloon pump effects on macrocirculation and microcirculation in cardiogenic shock patients supported by venoarterial extracorporeal membrane oxygenation. Crit Care Med, 2014, 42(9): 2075-2082. |
31. | Bréchot N, Demondion P, Santi F, et al. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation. Eur Heart J Acute Cardiovasc Care, 2018, 7(1): 62-69. |
32. | Takayama H, Landes E, Truby L, et al. Feasibility of smaller arterial cannulas in venoarterial extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg, 2015, 149(5): 1428-1433. |
33. | Russo JJ, Aleksova N, Pitcher I, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol, 2019, 73(6): 654-662. |
34. | Mueller JP, Kuenzli A, Reuthebuch O, et al. The CentriMag: A new optimized centrifugal blood pump with levitating impeller. Heart Surg Forum, 2004, 7(5): E477-E480. |
35. | De Robertis F, Birks EJ, Rogers P, et al. Clinical performance with the Levitronix Centrimag short-term ventricular assist device. J Heart Lung Transplant, 2006, 25(2): 181-186. |
36. | Takayama H, Soni L, Kalesan B, et al. Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ Heart Fail, 2014, 7(5): 799-806. |
37. | Cevasco MR, Li B, Han J, et al. Adverse event profile associated with prolonged use of centrimag ventricular assist device for refractory cardiogenic shock. ASAIO J, 2019, 65(8): 806-811. |
38. | Mohite PN, Zych B, Popov AF, et al. CentriMag short-term ventricular assist as a bridge to solution in patients with advanced heart failure: Use beyond 30 days. Eur J Cardiothorac Surg, 2013, 44(5): e310-e315. |
39. | John R, Long JW, Massey HT, et al. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg, 2011, 141(4): 932-939. |
40. | Bhama JK, Kormos RL, Toyoda Y, et al. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant, 2009, 28(9): 971-976. |
41. | Shuhaiber JH, Jenkins D, Berman M, et al. The Papworth experience with the Levitronix CentriMag ventricular assist device. J Heart Lung Transplant, 2008, 27(2): 158-164. |
42. | Potapov EV, Antonides C, Crespo-Leiro MG, et al. 2019 EACTS expert consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg, 2019, 56(2): 230-270. |
43. | Goldstein DJ, Oz MC, Rose EA. Implantable left ventricular assist devices. N Engl J Med, 1998, 339(21): 1522-1533. |
44. | Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med, 2001, 345(20): 1435-1443. |
45. | Dembitsky WP, Tector AJ, Park S, et al. Left ventricular assist device performance with long-term circulatory support: Lessons from the REMATCH trial. Ann Thorac Surg, 2004, 78(6): 2123-2129. |
46. | Pagani FD, Long JW, Dembitsky WP, et al. Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Ann Thorac Surg, 2006, 82(4): 1413-1418. |
47. | Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med, 2007, 357(9): 885-896. |
48. | Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med, 2009, 361(23): 2241-2251. |
49. | Kamdar F, Boyle A, Liao K, et al. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant, 2009, 28(4): 352-359. |
50. | Feller ED, Sorensen EN, Haddad M, et al. Clinical outcomes are similar in pulsatile and nonpulsatile left ventricular assist device recipients. Ann Thorac Surg, 2007, 83(3): 1082-1088. |
51. | Krabatsch T, Schweiger M, Dandel M, et al. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg, 2011, 91(5): 1335-1340. |
52. | Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant, 2017, 36(10): 1080-1086. |
53. | Sheikh FH, Russell SD. HeartMate®Ⅱ continuous-flow left ventricular assist system. Expert Rev Med Devices, 2011, 8(1): 11-21. |
54. | Teuteberg JJ, Cleveland JC, Cowger J, et al. The Society of Thoracic Surgeons Intermacs 2019 annual report: The changing landscape of devices and indications. Ann Thorac Surg, 2020, 109(3): 649-660. |
55. | Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate Ⅱ and HeartWare left ventricular assist devices: A systematic review. Neurocrit Care, 2017, 27(1): 17-25. |
56. | Sorensen EN, Pierson RN, Feller ED, et al. University of Maryland surgical experience with the Jarvik 2000 axial flow ventricular assist device. Ann Thorac Surg, 2012, 93(1): 133-140. |
57. | Selzman CH, Koliopoulou A, Glotzbach JP, et al. Evolutionary improvements in the Jarvik 2000 left ventricular assist device. ASAIO J, 2018, 64(6): 827-830. |
58. | Tuzun E, Gregoric ID, Conger JL, et al. The effect of intermittent low speed mode upon aortic valve opening in calves supported with a Jarvik 2000 axial flow device. ASAIO J, 2005, 51(2): 139-143. |
59. | Kohno H, Matsumiya G, Sawa Y, et al. Can the intermittent low-speed function of left ventricular assist device prevent aortic insufficiency? J Artif Organs, 2021, 24(2): 191-198. |
60. | Kohno H, Matsumiya G, Sawa Y, et al. The Jarvik 2000 left ventricular assist device as a bridge to transplantation: Japanese Registry for Mechanically Assisted Circulatory Support. J Heart Lung Transplant, 2018, 37(1): 71-78. |
61. | Larose JA, Tamez D, Ashenuga M, et al. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J, 2010, 56(4): 285-289. |
62. | Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons Intermacs 2020 annual report. Ann Thorac Surg, 2021, 111(3): 778-792. |
63. | Najjar SS, Slaughter MS, Pagani FD, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant, 2014, 33(1): 23-34. |
64. | Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med, 2017, 376(5): 451-460. |
65. | Schroder JN, Milano CA. A tale of two centrifugal left ventricular assist devices. J Thorac Cardiovasc Surg, 2017, 154(3): 850-852. |
66. | Cho SM, Mehaffey JH, Meyers SL, et al. Cerebrovascular events in patients with centrifugal-flow left ventricular assist devices: Propensity score-matched analysis from the intermacs registry. Circulation, 2021, 144(10): 763-772. |
67. | Saito S, Yamazaki K, Nishinaka T, et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: A Japanese multicenter study using J-MACS. J Heart Lung Transplant, 2014, 33(6): 599-608. |
68. | Bartoli CR, Kang J, Zhang D, et al. Left ventricular assist device design reduces von willebrand factor degradation: A comparative study between the HeartMate Ⅱ and the EVAHEART left ventricular assist system. Ann Thorac Surg, 2017, 103(4): 1239-1244. |
69. | May-Newman K, Montes R, Campos J, et al. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs, 2019, 43(9): 834-848. |
70. | Schmitto JD, Hanke JS, Rojas SV, et al. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate Ⅲ). J Heart Lung Transplant, 2015, 34(6): 858-860. |
71. | Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med, 2018, 378(15): 1386-1395. |
72. | Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device—Final report. N Engl J Med, 2019, 380(17): 1618-1627. |
73. | O'Connor MJ, Lorts A, Davies RR, et al. Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant, 2020, 39(6): 573-579. |
74. | Hanke JS, Rojas SV, Dogan G, et al. First series of left ventricular assist device exchanges to HeartMate 3. Eur J Cardiothorac Surg, 2017, 51(5): 887-892. |
75. | Netuka I, Pya Y, Zimpfer D, et al. First 5-year multicentric clinical trial experience with the HeartMate 3 left ventricular assist system. J Heart Lung Transplant, 2021, 40(4): 247-250. |
76. | DeVries WC, Anderson JL, Joyce LD, et al. Clinical use of the total artificial heart. N Engl J Med, 1984, 310(5): 273-278. |
77. | Torregrossa G, Anyanwu A, Zucchetta F, et al. SynCardia: The total artificial heart. Ann Cardiothorac Surg, 2014, 3(6): 612-620. |
78. | Cook JA, Shah KB, Quader MA, et al. The total artificial heart. J Thorac Dis, 2015, 7(12): 2172-2180. |
79. | David CH, Lacoste P, Nanjaiah P, et al. A heart transplant after total artificial heart support: Initial and long-term results. Eur J Cardiothorac Surg, 2020, 58(6): 1175-1181. |
80. | Kirsch ME, Nguyen A, Mastroianni C, et al. SynCardia temporary total artificial heart as bridge to transplantation: Current results at La Pitié Hospital. Ann Thorac Surg, 2013, 95(5): 1640-1646. |
81. | Torregrossa G, Morshuis M, Varghese R, et al. Results with SynCardia total artificial heart beyond 1 year. ASAIO J, 2014, 60(6): 626-634. |
82. | Mohacsi P, Leprince P. The CARMAT total artificial heart. Eur J Cardiothorac Surg, 2014, 46(6): 933-934. |
83. | Ng BC, Smith PA, Nestler F, et al. Application of adaptive starling-like controller to total artificial heart using dual rotary blood pumps. Ann Biomed Eng, 2017, 45(3): 567-579. |
84. | Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant, 2019, 38(4): 339-343. |
- 1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev, 2017, 3(1): 7-11.
- 2. 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要. 中国循环杂志, 2021, 36(6): 521-545.
- 3. Khush KK, Cherikh WS, Chambers DC, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report-2019; focus theme: Donor and recipient size match. J Heart Lung Transplant, 2019, 38(10): 1056-1066.
- 4. Stewart GC, Mehra MR. A history of devices as an alternative to heart transplantation. Heart Fail Clin, 2014, 10(1 Suppl): S1-S12.
- 5. Vieira JL, Ventura HO, Mehra MR. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond. Prog Cardiovasc Dis, 2020, 63(5): 630-639.
- 6. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 2021, 42(36): 3599-3726.
- 7. Combes A, Price S, Slutsky AS, et al. Temporary circulatory support for cardiogenic shock. Lancet, 2020, 396(10245): 199-212.
- 8. Hochman JS, Katz S. Back to the future in cardiogenic shock—Initial PCI of the culprit lesion only. N Engl J Med, 2017, 377(25): 2486-2488.
- 9. Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med, 2012, 367(14): 1287-1296.
- 10. Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK Ⅱ): Final 12 month results of a randomised, open-label trial. Lancet, 2013, 382(9905): 1638-1645.
- 11. Thiele H, Zeymer U, Thelemann N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: Long-term 6-year outcome of the randomized IABP-SHOCK Ⅱ trial. Circulation, 2019, 139(3): 395-403.
- 12. Burzotta F, Trani C, Doshi SN, et al. Impella ventricular support in clinical practice: Collaborative viewpoint from a European expert user group. Int J Cardiol, 2015, 201: 684-691.
- 13. Ouweneel DM, de Brabander J, Karami M, et al. Real-life use of left ventricular circulatory support with Impella in cardiogenic shock after acute myocardial infarction: 12 years AMC experience. Eur Heart J Acute Cardiovasc Care, 2019, 8(4): 338-349.
- 14. Maniuc O, Salinger T, Anders F, et al. Impella CP use in patients with non-ischaemic cardiogenic shock. ESC Heart Fail, 2019, 6(4): 863-866.
- 15. Karami M, den Uil CA, Ouweneel DM, et al. Mechanical circulatory support in cardiogenic shock from acute myocardial infarction: Impella CP/5. 0 versus ECMO. Eur Heart J Acute Cardiovasc Care, 2020, 9(2): 164-172.
- 16. Schiller P, Hellgren L, Vikholm P. Survival after refractory cardiogenic shock is comparable in patients with Impella and veno-arterial extracorporeal membrane oxygenation when adjusted for SAVE score. Eur Heart J Acute Cardiovasc Care, 2019, 8(4): 329-337.
- 17. Lemor A, Hosseini Dehkordi SH, Basir MB, et al. Impella versus extracorporeal membrane oxygenation for acute myocardial infarction cardiogenic shock. Cardiovasc Revasc Med, 2020, 21(12): 1465-1471.
- 18. Schrage B, Ibrahim K, Loehn T, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation, 2019, 139(10): 1249-1258.
- 19. Atkinson TM, Ohman EM, O'Neill WW, et al. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: An interventional perspective. JACC Cardiovasc Interv, 2016, 9(9): 871-883.
- 20. Tempelhof MW, Klein L, Cotts WG, et al. Clinical experience and patient outcomes associated with the TandemHeart percutaneous transseptal assist device among a heterogeneous patient population. ASAIO J, 2011, 57(4): 254-261.
- 21. Alli OO, Singh IM, Holmes DR, et al. Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: The Mayo Clinic experience. Catheter Cardiovasc Interv, 2012, 80(5): 728-734.
- 22. Großekettler L, Schmack B, Katus HA, et al. Case series of high-risk percutaneous coronary intervention with rotational atherectomy under short-term mechanical circulatory support with TandemHeart in the setting of acute myocardial infarction. Eur Heart J Case Rep, 2020, 4(4): 1-6.
- 23. Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J, 2005, 26(13): 1276-1283.
- 24. Burkhoff D, Cohen H, Brunckhorst C, et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J, 2006, 152(3): 469.e1-e8.
- 25. Danial P, Hajage D, Nguyen LS, et al. Percutaneous versus surgical femoro-femoral veno-arterial ECMO: A propensity score matched study. Intensive Care Med, 2018, 44(12): 2153-2161.
- 26. Hill JD, O'Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med, 1972, 286(12): 629-634.
- 27. ECLS Registry Report 2021. pdf.
- 28. Cheng R, Hachamovitch R, Kittleson M, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1, 866 adult patients. Ann Thorac Surg, 2014, 97(2): 610-616.
- 29. Guglin M, Zucker MJ, Bazan VM, et al. Venoarterial ECMO for adults: JACC scientific expert panel. J Am Coll Cardiol, 2019, 73(6): 698-716.
- 30. Petroni T, Harrois A, Amour J, et al. Intra-aortic balloon pump effects on macrocirculation and microcirculation in cardiogenic shock patients supported by venoarterial extracorporeal membrane oxygenation. Crit Care Med, 2014, 42(9): 2075-2082.
- 31. Bréchot N, Demondion P, Santi F, et al. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation. Eur Heart J Acute Cardiovasc Care, 2018, 7(1): 62-69.
- 32. Takayama H, Landes E, Truby L, et al. Feasibility of smaller arterial cannulas in venoarterial extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg, 2015, 149(5): 1428-1433.
- 33. Russo JJ, Aleksova N, Pitcher I, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol, 2019, 73(6): 654-662.
- 34. Mueller JP, Kuenzli A, Reuthebuch O, et al. The CentriMag: A new optimized centrifugal blood pump with levitating impeller. Heart Surg Forum, 2004, 7(5): E477-E480.
- 35. De Robertis F, Birks EJ, Rogers P, et al. Clinical performance with the Levitronix Centrimag short-term ventricular assist device. J Heart Lung Transplant, 2006, 25(2): 181-186.
- 36. Takayama H, Soni L, Kalesan B, et al. Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ Heart Fail, 2014, 7(5): 799-806.
- 37. Cevasco MR, Li B, Han J, et al. Adverse event profile associated with prolonged use of centrimag ventricular assist device for refractory cardiogenic shock. ASAIO J, 2019, 65(8): 806-811.
- 38. Mohite PN, Zych B, Popov AF, et al. CentriMag short-term ventricular assist as a bridge to solution in patients with advanced heart failure: Use beyond 30 days. Eur J Cardiothorac Surg, 2013, 44(5): e310-e315.
- 39. John R, Long JW, Massey HT, et al. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg, 2011, 141(4): 932-939.
- 40. Bhama JK, Kormos RL, Toyoda Y, et al. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant, 2009, 28(9): 971-976.
- 41. Shuhaiber JH, Jenkins D, Berman M, et al. The Papworth experience with the Levitronix CentriMag ventricular assist device. J Heart Lung Transplant, 2008, 27(2): 158-164.
- 42. Potapov EV, Antonides C, Crespo-Leiro MG, et al. 2019 EACTS expert consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg, 2019, 56(2): 230-270.
- 43. Goldstein DJ, Oz MC, Rose EA. Implantable left ventricular assist devices. N Engl J Med, 1998, 339(21): 1522-1533.
- 44. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med, 2001, 345(20): 1435-1443.
- 45. Dembitsky WP, Tector AJ, Park S, et al. Left ventricular assist device performance with long-term circulatory support: Lessons from the REMATCH trial. Ann Thorac Surg, 2004, 78(6): 2123-2129.
- 46. Pagani FD, Long JW, Dembitsky WP, et al. Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Ann Thorac Surg, 2006, 82(4): 1413-1418.
- 47. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med, 2007, 357(9): 885-896.
- 48. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med, 2009, 361(23): 2241-2251.
- 49. Kamdar F, Boyle A, Liao K, et al. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant, 2009, 28(4): 352-359.
- 50. Feller ED, Sorensen EN, Haddad M, et al. Clinical outcomes are similar in pulsatile and nonpulsatile left ventricular assist device recipients. Ann Thorac Surg, 2007, 83(3): 1082-1088.
- 51. Krabatsch T, Schweiger M, Dandel M, et al. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg, 2011, 91(5): 1335-1340.
- 52. Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant, 2017, 36(10): 1080-1086.
- 53. Sheikh FH, Russell SD. HeartMate®Ⅱ continuous-flow left ventricular assist system. Expert Rev Med Devices, 2011, 8(1): 11-21.
- 54. Teuteberg JJ, Cleveland JC, Cowger J, et al. The Society of Thoracic Surgeons Intermacs 2019 annual report: The changing landscape of devices and indications. Ann Thorac Surg, 2020, 109(3): 649-660.
- 55. Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate Ⅱ and HeartWare left ventricular assist devices: A systematic review. Neurocrit Care, 2017, 27(1): 17-25.
- 56. Sorensen EN, Pierson RN, Feller ED, et al. University of Maryland surgical experience with the Jarvik 2000 axial flow ventricular assist device. Ann Thorac Surg, 2012, 93(1): 133-140.
- 57. Selzman CH, Koliopoulou A, Glotzbach JP, et al. Evolutionary improvements in the Jarvik 2000 left ventricular assist device. ASAIO J, 2018, 64(6): 827-830.
- 58. Tuzun E, Gregoric ID, Conger JL, et al. The effect of intermittent low speed mode upon aortic valve opening in calves supported with a Jarvik 2000 axial flow device. ASAIO J, 2005, 51(2): 139-143.
- 59. Kohno H, Matsumiya G, Sawa Y, et al. Can the intermittent low-speed function of left ventricular assist device prevent aortic insufficiency? J Artif Organs, 2021, 24(2): 191-198.
- 60. Kohno H, Matsumiya G, Sawa Y, et al. The Jarvik 2000 left ventricular assist device as a bridge to transplantation: Japanese Registry for Mechanically Assisted Circulatory Support. J Heart Lung Transplant, 2018, 37(1): 71-78.
- 61. Larose JA, Tamez D, Ashenuga M, et al. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J, 2010, 56(4): 285-289.
- 62. Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons Intermacs 2020 annual report. Ann Thorac Surg, 2021, 111(3): 778-792.
- 63. Najjar SS, Slaughter MS, Pagani FD, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant, 2014, 33(1): 23-34.
- 64. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med, 2017, 376(5): 451-460.
- 65. Schroder JN, Milano CA. A tale of two centrifugal left ventricular assist devices. J Thorac Cardiovasc Surg, 2017, 154(3): 850-852.
- 66. Cho SM, Mehaffey JH, Meyers SL, et al. Cerebrovascular events in patients with centrifugal-flow left ventricular assist devices: Propensity score-matched analysis from the intermacs registry. Circulation, 2021, 144(10): 763-772.
- 67. Saito S, Yamazaki K, Nishinaka T, et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: A Japanese multicenter study using J-MACS. J Heart Lung Transplant, 2014, 33(6): 599-608.
- 68. Bartoli CR, Kang J, Zhang D, et al. Left ventricular assist device design reduces von willebrand factor degradation: A comparative study between the HeartMate Ⅱ and the EVAHEART left ventricular assist system. Ann Thorac Surg, 2017, 103(4): 1239-1244.
- 69. May-Newman K, Montes R, Campos J, et al. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs, 2019, 43(9): 834-848.
- 70. Schmitto JD, Hanke JS, Rojas SV, et al. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate Ⅲ). J Heart Lung Transplant, 2015, 34(6): 858-860.
- 71. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med, 2018, 378(15): 1386-1395.
- 72. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device—Final report. N Engl J Med, 2019, 380(17): 1618-1627.
- 73. O'Connor MJ, Lorts A, Davies RR, et al. Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant, 2020, 39(6): 573-579.
- 74. Hanke JS, Rojas SV, Dogan G, et al. First series of left ventricular assist device exchanges to HeartMate 3. Eur J Cardiothorac Surg, 2017, 51(5): 887-892.
- 75. Netuka I, Pya Y, Zimpfer D, et al. First 5-year multicentric clinical trial experience with the HeartMate 3 left ventricular assist system. J Heart Lung Transplant, 2021, 40(4): 247-250.
- 76. DeVries WC, Anderson JL, Joyce LD, et al. Clinical use of the total artificial heart. N Engl J Med, 1984, 310(5): 273-278.
- 77. Torregrossa G, Anyanwu A, Zucchetta F, et al. SynCardia: The total artificial heart. Ann Cardiothorac Surg, 2014, 3(6): 612-620.
- 78. Cook JA, Shah KB, Quader MA, et al. The total artificial heart. J Thorac Dis, 2015, 7(12): 2172-2180.
- 79. David CH, Lacoste P, Nanjaiah P, et al. A heart transplant after total artificial heart support: Initial and long-term results. Eur J Cardiothorac Surg, 2020, 58(6): 1175-1181.
- 80. Kirsch ME, Nguyen A, Mastroianni C, et al. SynCardia temporary total artificial heart as bridge to transplantation: Current results at La Pitié Hospital. Ann Thorac Surg, 2013, 95(5): 1640-1646.
- 81. Torregrossa G, Morshuis M, Varghese R, et al. Results with SynCardia total artificial heart beyond 1 year. ASAIO J, 2014, 60(6): 626-634.
- 82. Mohacsi P, Leprince P. The CARMAT total artificial heart. Eur J Cardiothorac Surg, 2014, 46(6): 933-934.
- 83. Ng BC, Smith PA, Nestler F, et al. Application of adaptive starling-like controller to total artificial heart using dual rotary blood pumps. Ann Biomed Eng, 2017, 45(3): 567-579.
- 84. Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant, 2019, 38(4): 339-343.