1. |
Liotta D, Crawford ES, Cooley DA, et al. Prolonged partial left ventricular bypass by means of an intrathoracic pump implanted in the left chest. Trans Am Soc Artif Intern Organs, 1962, 8: 90-99.
|
2. |
Yuzefpolskaya M, Schroeder SE, Houston BA, et al. The Society of Thoracic Surgeons Intermacs 2022 annual report: Focus on the 2018 heart transplant allocation system. Ann Thorac Surg, 2023, 115(2): 311-327.
|
3. |
Mehra MR, Goldstein DJ, Cleveland JC, et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA, 2022, 328(12): 1233-1242.
|
4. |
Estep JD, Soltesz E, Cogswell R. The new heart transplant allocation system: Early observations and mechanical circulatory support considerations. J Thorac Cardiovasc Surg, 2020, S0022-5223(20)32638-6.
|
5. |
Goldstein DJ, Naka Y, Horstmanshof D, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: The multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol, 2020, 5(4): 411-419.
|
6. |
胡盛寿. 人工心脏治疗心脏衰竭—中国近5年临床应用进展. 深圳: 中国重症心脏病大会 (CHDC), 2022.
|
7. |
Varshney AS, DeFilippis EM, Cowger JA, et al. Trends and outcomes of left ventricular assist device therapy: JACC focus seminar. J Am Coll Cardiol, 2022, 79(11): 1092-1107.
|
8. |
VROMAN L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature, 1962, 196: 476-477.
|
9. |
Jackson SP. The growing complexity of platelet aggregation. Blood, 2007, 109(12): 5087-5095.
|
10. |
Letzen B, Park J, Tuzun Z, et al. Design and development of a miniaturized percutaneously deployable wireless left ventricular assist device: Early prototypes and feasibility testing. ASAIO J, 2018, 64(2): 147-153.
|
11. |
Waters BH, Park J, Bouwmeester JC, et al. Electrical power to run ventricular assist devices using the free-range resonant electrical energy delivery system. J Heart Lung Transplant, 2018, 37(12): 1467-1474.
|
12. |
Karim ML, Bosnjak AM, McLaughlin J, et al. Transcutaneous pulsed RF energy transfer mitigates tissue heating in high power demand implanted device applications: In vivo and in silico models results. Sensors (Basel), 2022, 22(20): 7775.
|
13. |
Horie H, Isoyama T, Ishiyama K. Design of an innovative wireless left ventricular assist device driven by either extracorporeal magnets or an intracorporeal battery pack. ASAIO J, 2023, 69(2): e73-e79.
|
14. |
Cheng A, Williamitis CA, Slaughter MS. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: Is there an advantage to pulsatility? Ann Cardiothorac Surg, 2014, 3(6): 573-581.
|
15. |
Bozkurt S, van de Vosse FN, Rutten MC. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling. Int J Artif Organs, 2014, 37(10): 773-785.
|
16. |
Gaddum NR, Stevens M, Lim E, et al. Starling-like flow control of a left ventricular assist device: In vitro validation. Artif Organs, 2014, 38(3): E46-E56.
|
17. |
Moscato F, Arabia M, Colacino FM, et al. Left ventricle afterload impedance control by an axial flow ventricular assist device: A potential tool for ventricular recovery. Artif Organs, 2010, 34(9): 736-744.
|
18. |
van der Merwe J, Paul E, Rosenfeldt FL. Early gastrointestinal complications from ventricular assist devices is increased by non-pulsatile flow. Heart Lung Circ, 2020, 29(2): 295-300.
|
19. |
Attisani M, Centofanti P, Baronetto A, et al. HeartMate 3 left ventricular assist device minimally invasive off-pump implantation. Multimed Man Cardiothorac Surg, 2018.
|
20. |
Ricklefs M, Hanke JS, Dogan G, et al. Less invasive surgical approaches for left ventricular assist device implantation. Semin Thorac Cardiovasc Surg, 2018, 30(1): 1-6.
|
21. |
Bjelic M, Vidula H, Wu IY, et al. Impact of surgical approach for left ventricular assist device implantation on postoperative invasive hemodynamics and right ventricular failure. J Card Surg, 2022, 37(10): 3072-3081.
|
22. |
Sarwari H, Schaefer A, Barten MJ, et al. TAVI using a self-expandable device for aortic regurgitation following LVAD implantation. Thorac Cardiovasc Surg Rep, 2019, 8(1): e33-e36.
|
23. |
Takeda K, Naka Y, Yang JA, et al. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant, 2014, 33(2): 141-148.
|
24. |
Yoshioka D, Takayama H, Garan RA, et al. Contemporary outcome of unplanned right ventricular assist device for severe right heart failure after continuous-flow left ventricular assist device insertion. Interact Cardiovasc Thorac Surg, 2017, 24(6): 828-834.
|
25. |
Grandin EW, Troutman GS, Gulati AA, et al. A modified grading system for early right heart failure matches functional outcomes and survival after left ventricular assist devices. ASAIO J, 2021, 67(2): 185-191.
|
26. |
Rivas-Lasarte M, Kumar S, Derbala MH, et al. Prediction of right heart failure after left ventricular assist implantation: External validation of the EUROMACS right-sided heart failure risk score. Eur Heart J Acute Cardiovasc Care, 2021, 10(7): 723-732.
|
27. |
Vis A, Arfaee M, Khambati H, et al. The ongoing quest for the first total artificial heart as destination therapy. Nat Rev Cardiol, 2022, 19(12): 813-828.
|
28. |
Copeland J, Langford S, Giampietro J, et al. Total artificial heart update. Surg Technol Int, 2021, 39: 243-248.
|
29. |
Basuray A, Fang JC. Management of patients with recovered systolic function. Prog Cardiovasc Dis, 2016, 58(4): 434-443.
|
30. |
Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat Rev Cardiol, 2018, 15(2): 83-96.
|
31. |
Wever-Pinzon O, Drakos SG, McKellar SH, et al. Cardiac recovery during long-term left ventricular assist device support. J Am Coll Cardiol, 2016, 68(14): 1540-1553.
|