1. |
肖宝臣, 江虹. X线胸片与CT诊断肺癌临床分析. 中国医药指南, 2008, 6(15): 256.
|
2. |
孙红, 白友贤. X线胸片与CT诊断1cm左右周围型小肺癌. 中国医学影像学杂志, 1998, 6(1): 3.
|
3. |
Haugeland J. Artificial intelligence: The very idea. Philosophical Review, 1985, 7: 3-11.
|
4. |
夏黎明, 沈坚, 张荣国, 等. 深度学习技术在医学影像领域的应用. 协和医学杂志, 2018, 9(1): 5.
|
5. |
杨文静, 吕章艳, 冯小双, 等. 人工智能在癌症研究领域的文献可视化分析. 肿瘤防治研究, 2021, 48(2): 7.
|
6. |
成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展. 计算机研究与发展, 2020, 57(6): 10.
|
7. |
Zhang H, Zhang H. LungSeek: 3D selective kernel residual network for pulmonary nodule diagnosis. Vis Comput, 2022, 27: 1-14.
|
8. |
Kasinathan G, Jayakumar S. Cloud-based lung tumor detection and stage classification using deep learning techniques. BioMed Res Int, 2022, 2022: 4185835.
|
9. |
Wang C, Xu X, Shao J, et al. Deep learning to predict EGFR mutation and PD-L1 expression status in non-small-cell lung cancer on computed tomography images. J Oncol, 2021, 2021: 5499385.
|
10. |
Noorbakhsh J, Farahmand S, Namburi S, et al. Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images. Nat Commun, 2020, 11(1): 1-14.
|
11. |
国家卫生健康委员会. 食管癌诊疗规范(2018年版). 中华消化病与影像杂志(电子版), 2019, 9(4): 158-192.
|
12. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA, 2016, 66(2): 115-132.
|
13. |
Cai Z, Liu Q. Understanding the Global Cancer Statistics 2018: Implications for cancer control. Sci China Life Sci, 2021, 64(6): 1017-1020.
|
14. |
冯祥, 宋统球, 钱东福, 等. 江苏省扬中市食管癌高危人群危险因素及其聚集性. 中华疾病控制杂志, 2021, 25(3): 6.
|
15. |
武育卫, 彭贵勇, 龙庆林, 等. 早期食管癌内镜治疗与外科手术疗效对比研究. 中国肿瘤, 2009, 18(9): 3.
|
16. |
赫捷, 邵康. 中国食管癌流行病学现状、诊疗现状及未来对策. 中国癌症杂志, 2011, 21(7): 4.
|
17. |
刘元芬, 段青. 食管癌X线气钡双重造影与CT检查的对比分析. 中国医药科学, 2012, 2(5): 2.
|
18. |
Ishihara R, Takeuchi Y, Chatani R, et al. Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists. Dis Esophagus, 2010, 23(6): 480-486.
|
19. |
Guo LJ, Xiao X, Wu CC, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc, 2020, 91(1): 41-51.
|
20. |
Gehrung M, Crispin-Ortuzar M, Berman A G, et al. Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat Med, 2021, 27(5): 833-841.
|
21. |
Sato F, Shimada Y, Selaru FM, et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer, 2005, 103(8): 1596-1605.
|
22. |
Mofidi R, Deans C, Duff MD, et al. Prediction of survival from carcinoma of oesophagus and oesophago-gastric junction following surgical resection using an artificial neural network. Eur J Surg Oncol, 2006, 32(5): 533-539.
|
23. |
Liu XL, Shao CY, Sun L, et al. An artificial neural network model predicting pathologic nodal metastases in clinical stage Ⅰ–Ⅱesophageal squamous cell carcinoma patients. J Thorac Dis, 2020, 12(10): 5580.
|
24. |
Moghtadaei M, Golpayegani MRH, Almasganj F, et al. Predicting the risk of squamous dysplasia and esophageal squamous cell carcinoma using minimum classification error method. Comput Bio Med, 2014, 45: 51-57.
|
25. |
Hayashida Y, Honda K, Osaka Y, et al. Possible prediction of chemoradiosensitivity of esophageal cancer by serum protein profiling. Clin Cancer Res, 2005, 11(22): 8042-8047.
|
26. |
Wang Y, Huang Y, Zhao Q, et al. Esophageal wall thickness on CT scans: Can it predict the T stage of primary thoracic esophageal squamous cell carcinoma? Esophagus, 2021: 1-9.
|
27. |
Yeh JCY, Yu WH, Yang CK, et al. Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network. Ann Transl Med, 2021, 9(1): 37.
|
28. |
Mourikis TP, Benedetti L, Foxall E, et al. Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma. Nat Commun, 2019, 10(1): 1-17.
|
29. |
Hackl H, Charoentong P, Finotello F, et al. Computational genomics tools for dissecting tumour–immune cell interactions. Nat Rev Genet, 2016, 17(8): 441-458.
|
30. |
Pratama R, Hwang JJ, Lee JH, et al. Authentication of differential gene expression in oral squamous cell carcinoma using machine learning applications. BMC Oral Health, 2021, 21(1): 1-8.
|
31. |
Li MX, Sun XM, Cheng WG, et al. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma. BMC Cancer, 2021, 21(1): 1-11.
|
32. |
王姗姗, 翟晓梅. 人工智能医学应用的伦理问题. 中国医学伦理学, 2019, 32(8): 972-976.
|
33. |
周吉银, 刘丹, 曾圣雅. 人工智能在医疗领域中应用的挑战与对策. 中国医学伦理学, 2019, 32(3): 281-286.
|
34. |
Pearson J D, Bremner R. Simplifying cancer: Binary pan-cancer superclasses stratified by opposite YAP/TEAD effects. Mol Cell Oncol, 2021, 8(5): 1981111.
|
35. |
Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv: 1702.08608, 2017.
|
36. |
纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法, 应用与安全研究综述. 计算机研究与发展, 2019, 56(10): 2071.
|
37. |
Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med, 2018, 15(11): e1002686.
|
38. |
Chen Q, Kuai Y, Wang S, et al. Deep learning-based classification of epithelial-mesenchymal transition for predicting response to therapy in clear cell renal cell carcinoma. Front Oncol, 2021, 11: 782515.
|
39. |
张珺倩, 张远, 尹勇, 等. 机器学习在肿瘤放射治疗领域应用进展. 生物医学工程学杂志, 2019, 36(5): 879-884.
|