1. |
Rusinek D, Krajewska J, Jarząb M. Mouse models of papillary thyroid carcinoma—short review. Endokrynol Pol, 2016, 67(2): 212-223.
|
2. |
黄韬, 胡丽丽, 周军. 难治性分化型甲状腺癌的研究进展. 东南大学学报(医学版), 2017, 36(5): 876-881.
|
3. |
Prete A, Borges de Souza P, Censi S, et al. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne), 2020, 11(1): 102-107.
|
4. |
王俊起. 分化型甲状腺癌的诊疗进展. 实用医学杂志, 2019, 35(20): 3258-3263.
|
5. |
Xi G, Best B, Mania-Farnell B, et al. Therapeutic potential for bone morphogenetic protein 4 in human malignant glioma. Neoplasia, 2017, 19(4): 261-270.
|
6. |
Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, et al. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol, 2019, 247(1): 9-20.
|
7. |
Martínez VG, Rubio C, Martínez-Fernández M, et al. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer. Clin Cancer Res, 2017, 23(23): 7388-7399.
|
8. |
Xue D, Sun JL, Yang J. Early L-T4 intervention improves fetal heart development in pregnant rats with subclinical hypothyroidism rats by activating BMP4/Smad4 signaling pathway. BMC Cardiovasc Disord, 2020, 20(1): 369.
|
9. |
Yu C, Zhang L, Luo D, et al. MicroRNA-146b-3p promotes cell metastasis by directly targeting NF2 in human papillary thyroid cancer. Thyroid, 2018, 28(12): 1627-1641.
|
10. |
李兴睿, 徐滔. 美国癌症联合委员会第 8 版分化型甲状腺癌 TNM 分期更新解读. 临床外科杂志, 2019, 27(1): 33-35.
|
11. |
中国抗癌协会甲状腺癌专业委员会(CATO). 甲状腺微小乳头状癌诊断与治疗中国专家共识(2016 版). 中国肿瘤临床, 2016, 43(10): 405-411.
|
12. |
Kartal K, Aygün N, Uludağ M. Clinicopathologic differences between micropapillary and papillary thyroid carcinoma. Sisli Etfal Hastan Tip Bul, 2019, 53(2): 120-124.
|
13. |
陈锐, 陈创, 王耀槐, 等. 甲状腺微小乳头状癌不同年龄段的临床病理特点比较. 临床外科杂志, 2017, 25(11): 846-849.
|
14. |
So YK, Kim MJ, Kim S, et al. Lateral lymph node metastasis in papillary thyroid carcinoma: A systematic review and meta-analysis for prevalence, risk factors, and location. Int J Surg, 2018, 50: 94-103.
|
15. |
Choi S, Yu J, Park A, et al. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep, 2019, 9(1): 11724.
|
16. |
Zhang J, Luo A, Huang F, et al. SERPINE2 promotes esophageal squamous cell carcinoma metastasis by activating BMP4. Cancer Lett, 2020, 469(1): 390-398.
|
17. |
Deng G, Chen Y, Guo C, et al. BMP4 promotes the metastasis of gastric cancer by inducing epithelial-mesenchymal transition via ID1. J Cell Sci, 2020, 133(11): jcs237222.
|
18. |
Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci, 2018, 14(2): 111-123.
|
19. |
姚磊, 林雨佳, 高爽, 等. miR-34a 通过调控 TGF-β/Smad4 信号通路激活自噬而降低结肠癌细胞对奥沙利铂的耐药性. 中国普外基础与临床杂志, 2018, 25(6): 680-688.
|
20. |
瞿根义, 张玉龙, 徐勇, 等. FOXO1 和 Smad4 对前列腺癌增殖和转移的协同抑制作用. 临床与病理杂志, 2020, 40(7): 1625-1631.
|
21. |
Thomsen LH, Fog-Tonnesen M, Nielsen Fink L, et al. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model. Ren Fail, 2017, 39(1): 629-642.
|
22. |
Cyr-Depauw C, Northey JJ, Tabariès S, et al. Chordin-Like 1 suppresses bone morphogenetic protein 4-induced breast cancer cell migration and invasion. Mol Cell Biol, 2016, 36(10): 1509-1525.
|
23. |
Jiramongkolchai P, Owens P, Hong CC. Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition. Biochem Soc Trans, 2016, 44(4): 1117-1134.
|
24. |
Xie H, Liu M, Jin Y, et al. miR-1323 suppresses bone mesenchymal stromal cell osteogenesis and fracture healing via inhibiting BMP4/SMAD4 signaling. J Orthop Surg Res, 2020, 15(1): 237.
|
25. |
Eckhardt BL, Cao Y, Redfern AD, et al. Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis. Cancer Res, 2020, 80(6): 1304-1315.
|