Brain-computer interface (BCI) can be summarized as a system that uses online brain information to realize communication between brain and computer. BCI has experienced nearly half a century of development, although it now has a high degree of awareness in the public, but the application of BCI in the actual scene is still very limited. This collection invited some BCI teams in China to report their efforts to promote BCI from laboratory to real scene. This paper summarizes the main contents of the invited papers, and looks forward to the future of BCI.
Bacomics is a unified framework for the interactions of the brain and the outside world, integrating the subject, method, and application mode of brain-apparatus conversation. This article divides the brain-apparatus conversation modes from the perspective of biological and non-biological apparatus, including the brain-biological organ interaction (BAC-1), brain-external non-living equipment and environment interaction (BAC-2), and the fusion agents of these two interactions (BAC-3), and explains the ways and potential applications in different modes.
The aim of the present study was to investigate the alternations of brain functional networks at resting state in the schizophrenia (SCH) patients using voxel-wise degree centrality (DC) method. The resting-state functional magnetic resonance imaging (rfMRI) data were collected from 41 SCH patients and 41 matched healthy control subjects and then analyzed by voxel-wise DC method. The DC maps between the patient group and the control group were compared using by two sample t test. The correlation analysis was also performed between DC values and clinical symptom and illness duration in SCH group. Results showed that compared with the control group, SCH patients exhibited significantly decreased DC value in primary sensorimotor network, and increased DC value in executive control network. In addition, DC value of the regions with obvious differences between the two groups significantly correlated to Positive and Negative Syndrome Scale (PANSS) scores and illness duration of SCH patients. The study showed the abnormal functional integration in primary sensorimotor network and executive control network in SCH patients.
Steady-state visual evoked potential (SSVEP) is one of the commonly used control signals in brain-computer interface (BCI) systems. The SSVEP-based BCI has the advantages of high information transmission rate and short training time, which has become an important branch of BCI research field. In this review paper, the main progress on frequency recognition algorithm for SSVEP in past five years are summarized from three aspects, i.e., unsupervised learning algorithms, supervised learning algorithms and deep learning algorithms. Finally, some frontier topics and potential directions are explored.
ObjectiveTo reveal impairments in the perceptual networks in tuberous sclerosis complex (TSC) with epilepsy by functional connectivity MRI (fcMRI). MethodsThe fcMRI-based independent component analysis (ICA) was used to measure the resting state functional connectivity in nine TSC patients with epilepsy recruited from June 2010 to June 2012 and perceptual networks including the sensorimotor network (SMN), visual network (VN), and auditory network (AN) were investigated. The correlation between Z values in regions of interest (ROIs) and age of seizure onset or duration of epilepsy were analyzed. ResultsCompared with the controls, the TSC patients with epilepsy presented decreased functional connectivity in primary visual cortex within the VN networks and there were no increased connectivity. Increased connectivity in left middle temporal gyrus and inferior temporal gyrus was found and decreased connectivity was detected in right inferior frontal gyrus within AN networks. Decreased connectivity was detected at the right inferior frontal gyrus and the increase in connectivity was found in right thalamus within SMN netwoks. No significant correlations were found between Z values in ROIs including the primary visual cortex within the VN, right thalamus and inferior frontal gyrus within SMN, left temporal lobe and right inferior frontal gyrus within AN and the duration of the disease or the age of onset. ConclusionFhere is altered (both increased and decreased) functional connectivity in the perceptual networks of TSC patients with epilepsy. The decreased functional connectivity may reflect the dysfunction of correlative perceptual networks in TSC patients, and the increased functional connectivity may indicate the compensatory mechanism or reorganization of cortical networks. Our fcMRI study may contribute to the understanding of neuropathophysiological mechanisms underlying perceptual impairments in TSC patients with epilepsy.
Neurofeedback, as an alternative treatment method of behavioral medicine, is a technique which translates the electroencephalogram (EEG) signals to styles as sounds or animation to help people understand their own physical status and learn to enhance or suppress certain EEG signals to regulate their own brain functions after several repeated trainings. This paper develops a neurofeedback system on the foundation of brain-computer interface technique. The EEG features are extracted through real-time signal process and then translated to feedback information. Two feedback screens are designed for relaxation training and attention training individually. The veracity and feasibility of the neurofeedback system are validated through system simulation and preliminary experiment.
Studies have shown that the clinical manifestation of patients with neuropsychiatric disorders might be related to the abnormal connectivity of brain functions. Psychogenic non-epileptic seizures (PNES) are different from the conventional epileptic seizures due to the lack of the expected electroencephalographically epileptic changes in central nervous system, but are related to the presence of significant psychological factors. Diagnosis of PNES remains challenging. We found in the present work that the connectivity between the frontal and parieto-occipital in PNES was weaker than that of the controls by using network analysis based on electroencephalogram (EEG) signals. In addition, PNES were recognized by using the network properties as linear discriminant nalysis (LDA) input and classification accuracy was 85%. This study may provide a feasible tool for clinical diagnosis of PNES.