Objective To observe the characteristics of fundus autofluorescence (AF) in short wavelength AF (SW-AF) and Near Infrared AF (NIR-AF), and their relationship with visual fields. Methods Twelve patients (24 eyes) with primary RP were enrolled in this study. The patients included nine males (18 eyes) and three females (six eyes). The patients aged from 15 to 69 years, with a mean age of (35.33plusmn;15.03) years. All the patients were examined for color photography, SW-AF, NIR-AF, visual fields and optical coherence tomography examination. Results There were hyper-AF ring of varying sizes in posterior pole by SW-AF and NIR-AF examinations. The area of hypo-AF which located in SW-AF hyper-AF ring had a positive correlation with the area of hyper-AF in the NIR-AF (r=0.662,P<0.05). OCT showed that outside the hyper-AF ring, there were disconnected inner segment/outer segment (IS/OS) junction and external limiting membrane, and thinned outer nuclear layer and retinal pigment epithelium. Peripheral retinal osteocytes-like pigmentation showed non fluorescence in SW-AF and NIR-AF. The plaque-like area showed mottled and low fluorescence examined by SW-AF. SW-AF hyper-AF ring had a positive correlation with visual fields (r=0.492,P<0.05). Conclusions The area of hypo-AF inside of the SW-AF hyper-AF ring is related to visual fields in RP patients. The retinal structures in the hypo-AF area inside of the SW-AF hyper-AF ring, and in the NIR-AF hyper-AF region are normal.
ObjectiveTo analyze the subfoveal choroidal thickness in retinitis pigmentosa (RP) patients and to evaluate the correlation between the subfoveal choroidal thickness (SCT) and visual function. MethodsTotally 42 RP patients (84 eyes) and 49 age and diopter-matched normal controls (98 eyes) were enrolled in this study. All the patients were taken the enhanced depth imaging technique of optical coherence tomography (EDI-OCT) examination for the measurement of the SCT. The covariate analysis was used to analyze the interaction effect between age and group. Then the SCT was amended. The RP patients were examined by 30°visual field test (T32 or LVC program) and electroretinogram (ERG) test. 32 eyes examined by T32 program, 52 eyes examined by LVC program. The waveform of ERG, mean sensitivity (MS) and mean defect (MD) were recorded. The relationship of SCT, MS and MD were analyzed by Pearson correlation analysis. ResultsThe SCT of RP patients and controls were (223.12±69.59), (288.29±52.36) μm. The covariate analysis of covariance with different age group interaction was not statistically significant (F=1.619, P=0.205), as amended SCT of RP patients and controls were (217.34±6.60), (293.20±6.00) μm, respectively. The SCT was decreased in RP patients (t=7.042, P < 0.001). Among 84 eyes, bright cone response weaken in 35 eyes, scotopic rod response weaken in 31 eyes. The difference of SCT in different ERG waveform was not significant (t=-0.976, -1.584; P=0.332, 0.117). The MS and MD of 32 eyes using T32 program were (9.05±6.42), (18.84±6.30) dB, the SCT was (209.83±71.48) μm; the MS and SCT of 52 eyes using LVC program were (7.14±5.03) dB and (228.32±66.32) μm. The SCT was related to MS (r=0.494, P=0.003) and MD (r=-0.448, P=0.009) in eyes using T32 program. There was no correlation between SCT and MD in eyes using LVC program (r=-0.232, P=0.095). ConclusionsThe SCT of RP patients is thinner than that of normal controls. The SCT of RP patients is related to MS and MD of T32 program, but not correlated to ERG waveform and MS of LVC program.
ObjectiveTo observe the changes of circumpapillary retinal nerve fiber layer (CP-RNFL) thickness and optic disk parameters in retinitis pigmentosa (RP) eyes. MethodsProspective clinical case-control study. A total of 25 patients (42 eyes) with RP were in the RP group, and 42 age matched healthy subjects (84 eyes) in the control group. All subjects underwent optical coherence tomography (OCT) examination, in which 37 eyes with 3D optic disk scanning and 5 eyes with circle optic disk scanning. The parameters included average thickness of entire CP-RNFL, thickness of nasal, superior, temporal and inferior quadrant of CP-RNFL, disc area, disc cup area, rim area, cup/disc (C/D) area ratio, C/D horizontal diameter ratio, C/D vertical diameter ratio, disc cup volume and disc rim volume. ResultsThe average thickness and the thickness of temporal and nasal quadrants of CP-RNFL in RP group were significantly thicker than the control group (t=2.27, 3.73, 6.44; P=0.027, 0.00, 0.00), while the thickness of inferior and superior areas were the same as control group(t=-1.49, -1.19; P=0.14, 0.24). The disc area, disc cup area, C/D area ratio, C/D horizontal diameter ratio, C/D vertical diameter ratio, disc cup volume in RP group were significantly bigger than control group (P < 0.05), while rim area and rim volume were not significant differences (t=1.75, 0.40; P=0.08, 0.59). ConclusionIn comparison with the healthy subjects, the average thickness and temporal and nasal areas of CP-RNFL in RP eyes were thicker, and the disc area, disc cup area, C/D area ratio, C/D horizontal diameter ratio, C/D vertical diameter ratio, disc cup volume in RP eyes were bigger.
Usher syndrome (USH) is an autosomal recessive hereditary disease, characterized as retinitis pigmentosa and deafness. According to the severity of hearing loss, presence or absence of vestibular dysfunction, Usher syndrome is divided into 3 clinical subtypes: USH1, USH2 and USH3. Due to the genetically heterogeneous, it is important and valuable to find out the gene mutations in USH patients, which will be helpful to prenatal diagnosis, early intervention and gene therapy. Till now, the following 13 USH-related chromosomal loci were reported in the literature: USH1B, USH1C, USH1D (CDH23 gene), USH1F (PCDH15 gene), USH1G (SANS gene), USH1E, USH1H, USH1J and USH1K, USH2A, USH2C, USH2D and USH3 (CLRN1 gene). Ten out of all 13 loci have been located and identified. But more mechanisms should be further investigated, such as the relationship between the locus of gene mutations and clinical symptoms, how the modified protein structures and functions trigger clinical symptoms.
ObjectiveTo observe the disease-causing genes and the inheritance in sporadic retinitis pigmentosa (sRP) in Ningxia region. Methods49 sRP patients and 128 family members were recruited for this study. All the patients and family members received complete ophthalmic examinations including best corrected visual acuity, slit-lamp microscope, indirect ophthalmoscopy, fundus color photography, visual field, optic coherence tomography, full view electroretinogram. DNA was extracted from patients and family members. Using exon combined target region capture sequencing chip to screen the 230 candidate disease-causing gene mutations, polymerase chain reaction and direct sequencing were used to confirm the disease-causing mutations. Results24/49 patients (49.0%) had identified disease-causing genes, totally 16 genes were involved. There were 41 mutation sites were found, including 32 new mutations (78.0%). The disease-causing genes include USH2A, C2orf71, GNGA1, RPGR1, IFT140, TULP1, CLRN1, RPE65, ABCA4, GUCA1, EYS, CYP4V2, GPR98 and ATXN7. Based on pedigree analysis, 20 patients were autosomal recessive retinitis pigmentosa, 3 patients were autosomal dominant retinitis pigmentosa and 1 patient was X linked retinitis pigmentosa. 3/7 patients with USH2A mutations were identified as Usher syndrome. ConclusionsUSHZA is the main disease-causing of sRP patients in Ningxia region. 83.3% of sRP in this cohort are autosomal recessive retinitis pigmentosa.
Retinitis pigmentosa (RP) is a disease that seriously affects vision. It mainly affects rod cells and causes night blindness. At the end of the disease, due to the simultaneous involvement of cone cells, the patient’s central vision and peripheral vision loss are not effective. There is no effective treatment method. However, some studies have found that although the function of photoreceptors is lost in the pathological process of RP, the function of bipolar cells and ganglion cells and the neural connection with the visual center are preserved, which provides a condition of therapeutic application in optogenetics for optogenetics. Optogenetics controls the excitability of neurons by expressing the light-sensitive protein represented by rhodopsin ion channel protein-2 on neurons, and has shown great application prospects in reshaping the photoreceptor function of the retina. The treatment of a type of retinal degenerative disease provides an effective treatment option.