Objective To know the abnormal expression of the cell cycle-regulated proteins in pancreatic adenocarcinoma and their effect on tumor cell growth. Methods The expression of p16, p21, Rb and p53 protein in 47 cases were investigated by immunohistochemistry with wet autoclave pretreatment for antigen retriaval. Furthermore, tumor growth index were assessed by a novel anti-ki-67 antibody (ki-s5). Results All the expression of p53, p16, p21 and Rb protein were the nuclear stainning. The positive rates of p53, p16, p21 and Rb protein were 55%, 53%, 74% and 98% respectively. There was negative correlation between of p16, p21 or Rb protein expression and ki-67 growth index. No relation of p53 protein stainning and the expression of p21 protein was found. Conclusion In pancreatic adenocarcinoma, the negative expression of p16 protein and p21 protein may play an important role in tumor cell growth, but tumor proliferation caused by abnormality of Rb protein is rare. The expression of p21 protein was not associated with the expression of p53 protein.
Mitochondrial quality control includes mechanisms such as mitochondria-derived vesicles, fusion / fission and autophagy. These processes rely on the collaboration of a variety of key proteins in the inner and outer membranes of mitochondria to jointly regulate the morphological structure and functional integrity of mitochondria, repair mitochondrial damage, and maintain the homeostasis of their internal environment. The imbalance of mitochondrial quality control is associated with leukemia. Therefore, by exploring the mechanisms related to mitochondrial quality control of various leukemia cells and their interactions with immune cells and immune microenvironment, this article sought possible targets in the treatment of leukemia, providing new ideas for the immunotherapy of leukemia.
The temperature during the brain tumor therapy using high-intensity focused ultrasound (HIFU) should be controlled strictly. This research aimed at realizing uniform temperature distribution in the focal region by adjusting driving signals of phased array transducer. The three-dimensional simulation model imitating craniotomy HIFU brain tumor treatment was established based on an 82-element transducer and the computed tomography (CT) data of a volunteer's head was used to calculate and modulate the temperature distributions using the finite difference in time domain (FDTD) method. Two signals which focus at two preset targets with a certain distance were superimposed to emit each transducer element. Then the temperature distribution was modulated by changing the triggering time delay and amplitudes of the two signals. The results showed that when the distance between the two targets was within a certain range, a focal region with uniform temperature distribution could be created. And also the volume of focal region formed by one irradiation could be adjusted. The simulation results would provide theoretical method and reference for HIFU applying in clinical brain tumor treatment safely and effectively.
ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.
ObjectiveTo investigate the expression of mitochondrial transcription factor A (TFAM) in colon cancer and the effect of its expression on proliferation of colon cancer cell. MethodsThirty cases of colon cancer in the First Affiliated Hospital of Sun Yat-sen University from March 2013 to April 2013 were studied. TFAM mRNA was detected both in colon cancer tissue and para-cancer tissue by real-time PCR. TFAM mRNA and protein were detected in normal colon cell strain and colon cancer strains SW480, HT-29, and HCT116 by real-time PCR and Western blot, respectively. The proliferation of SW480 cells was evaluated after up-regulating TFAM. ResultsThe expression of TFAM mRNA in the colon cancer tissue was significantly higher than that in the para-cancer tissue (P < 0.000 1). The expressions of TFAM mRNA were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 8, 0.002 3, and 0.000 6, respectively), among which the most notable increase was detected in the SW480 cells. The expressions of TFAM protein were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 2, 0.003 8, and 0.001 6, respectively), among which the most notable increase was detected in the SW480 cells. After up-regulating TFAM by plasmid transfection, the proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 96 h and 120 h after transfection by the MTT test (P < 0.000 1). The proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 48 h after transfection by the BrdU test (P < 0.001 0). ConclusionTFAM expression is high in colon cancer. Up-regulated TFAM could promote the proliferation of colon cancer cells.
Limb motor dysfunction is the most common sequela of stroke. Its recovery cycle is long and difficult, which has an important impact on the physiology and psychology of patients. Therefore, the recovery of limb motor function after stroke has become the focus and difficulty of current rehabilitation. Brain-limb coordinate regulation technology is a rehabilitation strategy that effectively promotes the recovery of limb motor function and brain function through the organic combination of rehabilitation technology with limbs as target organs and brain as target organs. Based on the brain-limb coordinate regulation technology, this paper will systematically elaborate its theory and application through literature review, and then provide a more reasonable and effective choice for the treatment of limb motor dysfunction in stroke patients.
Cognitive reappraisal is an important strategy for emotion regulation. Studies show that even healthy people may not be able to implement this strategy successfully, but the underlying neural mechanism behind the behavioral observation of success or failure of reappraisal is unclear. In this paper, 28 healthy college students participated in an experiment of emotional regulation with the cognitive reappraisal strategy. They were asked to complete the cognitive psychological questionnaires before the experiment. Their behavioral scores and scalp electroencephalogram (EEG) signals were collected simultaneously during the experiment. We divided all the subjects into two groups, according to the statistical test of valence scores. Then we analyzed their questionnaires, early event-related potential (ERP) components N200, P200, and late positive potential (LPP), and calculated the correlation between the valence score and the amplitude of LPP. The results showed that, in both groups, compared with negative-watching, the reappraisal induced larger N200 and P200 components and there were two modulation patterns (“increase” and “decrease”) of the reappraisal effect on the amplitude of early LPP (300−1 000 ms after stimulus onset). Moreover, correlation analysis showed that significant positive correlation between two differences in the successful group, i.e., the greater difference in the valence scoresin between reappraisal and negative-watching, the greater difference in the amplitude of early LPP between reappraisal and negative-watching; but no such effect was found in the failure group. These results indicated that, whether reappraisal was successful or not, no significant effect on early ERP components was found; and there were different patterns of the reappraisal effect on early LPP. The difference between successful and failure groups was mainly reflected in early LPP, that is, the EEG characteristics and behavioral scores of successful group were significantly positively correlated. Furthermore, the small sample analysis showed that this correlation only existed in the pattern of "increase". In the future, more research of this modulation mode is necessary in order to find more stable EEG characteristics under successful cognitive reappraisal in emotion regulation.
Legionella, one of the causative pathogens of atypical pneumonia, firstly outbroked during the period of American Legion’s convention in 1976, Philadelphia. Legionella infection can accompany multisystem involvement. In addition to pulmonary lesions, it also accompanies extrapulmonary manifestations, including gastrointestinal symptoms (primarily diarrhea and hepatic dysfunction), neurological symptoms (primarily headache, disorientation and confusion of consciousness), urinary symptoms (primarily hematuria, proteinuria and acute kidney injury), rhabdomyolysis, as well as electrolyte disorder mainly characterized by hyponatremia and hypophosphatemia. This article reviews the extrapulmonary manifestations and its regulatory mechanism of Legionella infection.
Objective To investigate the polymorphism of the vitamin D receptor gene (VDR)TaqⅠin relation to diabetic retinopathy. Method Fragment length discrepant allele specific PCR(FLDAS-PCR) were used to determine VDR genetypes in 158 patients with diabetic retinopathy and in 198 normal subjects. Results The frequency distribution of VDR genotypes in diabetic retinopathy patients was 106 (67.1%) in TT, 33(20.9%) in Tt, 19(12.0%) in tt; and in normal persons was 165 (83.3%) in TT, 23(11.6%) in Tt, 10 (5.1%) in tt. There was a significant difference between diabetic retinopathy patients and normal persons in distribution of VDR gene TaqⅠgenotypes(Plt;0.05). Conclusions There is some distribution alterations of VDR gene polymorphism in diabetic retinopathy patients. (Chin J Ocul Fundus Dis, 2006, 22: 94-96)