Objective To prepare chitosan microcarriers and to use it to cultivate rat primary hepatocytes. Methods The crosslinked chitosan microcarrier was prepared by the reaction of glutaraldehyde with chitosan. Various factors that influence the preparation were studied and the reaction conditions were optimized. Rat primary hepatocytes cultured on chitosan microcarrier were observed by using phase contrast microscope and scanning electron microscope. Results Chitosan microcarriers with good properties could be prepared by adjusting the concentration of chitosan solution and the quantity of glutaraldehyde. Rat hepatocytes cultured on chitosan microcarriers retained the spherical shape as they have in vivo. And albumin secretion can last over one week. The highest albumin secretion rate reached 26.7μg/24h/ml. Conclusion Chitosan microcarriers is a promising scaffold for hepatocyte attachment, which can be used in bioartificial liver support system.
Objective To compare the effect and coverage of bacteriostasis of chitosan and sodium hyaluronate. Methods Each of the five bacteria, Proteus mirabilis, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus, was cultivated for 33 tubes of broth culture. Leaving three tubes each group as control group, ploidy diluted concentration of high relative molecular weight chitosan, low relative molecular weight chitosan and sodium hyaluronate were added respectively in the broth culture. All the tubes were cultivated for 18 hours at 37 ℃ with homeothermia. Then the growth of bacteria was observed. ResultsThe minimal inhibitory concentrations (MIC) of high relative molecular weight chitosan were : Proteus mirabilis 0.031%, Escherichia coli 0.063%, Candida albicans 0.063%, Pseudomonas aerugionosa 0.063%, Staphylococcus aureus 0.063%; and the MIC of low relative molecular weight chitosan were: Proteus mirabilis 0.125%, Escherichia coli 0.025%, Candida albicans 0.25%, Pseudomonas aeruginosa 0.25%, Staphylococcus aureus 0.125%; bacteria grew well in each tube of sodium hyaluronate group and control group. Conclusion The above results show that sodium hyaluronate has no bacteriostasis, while chitosan has bacteriostasison broad spectrum and high relative molecular weight chitosan has ber effect.
【Abstract】ObjectiveTo construct eukaryotic expression vector pSecTag2/HygroB-CD59 of human CD59 and transfect NIH3T3 cells after encapsulated by chitosan. MethodsThe human CD59 fragments were obtained by PCR form CD59-pGEM-T Easy Vector, cloned into the eukaryotic expression vector pSecTag2/HygroB, identified by restriction endonuclease’s digestion and DNA sequencing. After the particles of pSecTag2/HygroB-CD59 were encapsulated by chitosan, the NIH3T3 cells were transfected by chitosanCD59 nanoparticles and detected CD59 expression by immunohistochemistry stain. ResultsThe CD59 fragment was 312 bp. Its sequence was as same as CD59 cDNA in Genbank. After having been transfected by chitosan-CD59 nanoparticles in 24 hours, the 3T3 cells showed diffusely positive in the cytoplasms by anti-CD59 immunohistochemistry. ConclusionThe eukaryotic expression vector of human CD59 is constructed and transfected to NIH3T3 cells after encapsulated by chitosan. It will be very helpful for further study on transgenic livers.
To evaluate the effect of deacetylation degree (DDA) on the gelation behavior of thermosensitive chitosan-β glycerol phosphate disodium salt pentahydrate (CH-GP) system and to compare their rheological behaviors before and after gelation. Methods A series of thermosensitive CH-GP samples with different DDAs (70%, 85%, 90%, 97%)were prepared by dissolving CH with 0.1 mol/L HCl solution, 5 samples for every single DDA, and then all these CH-GP solution samples processed the frequency sweep test and temperature sweep test (10-70℃ , 1℃ /min) on AR 2000ex rheometer, with pH value of 7.02. Also, all the results of hydrogel samples were processed a frequency sweep test. Results With CH concentration of 2% (w/v) and pH value of 7.02 , the gelating temperature of CH-GP systems with different DDAs (85%, 90%, 97%) were (59.90 ± 0.08), (48.10 ± 0.08), (37.10 ± 0.11) ℃ , respectively. While the gelating temperature of CH-GP system with 70% DDA was over 70℃ . There were statistically significant differences in temperature and time of gelation among groups with different DDAs (P lt; 0.05). Furthermore, storage modulus of such system raised from dozens Pa to a magnitude of several kPa during gelation , while loss modulus kept almost steady. Conclusion Gelating temperature and mechanical property of the system could be measured objectively by rheological characterization. Thus during designing tissue engineered scaffolds for various purposes, it is helpful applying selected CH with optimal DDA to different target tissues.
Human fibroblasts and human epidermal keratinocytes were used for culture. Chitosan solution were added in the culture solution(DMEM). After 72 hours, the fibroblasts showed rapid growth in the control culture without Chitosan, But the numbers of human fibroblasts from growth was decreased as the concentration of Chitosan was increasing. On the contrary the human epidermal keratinocytes growed more rapidly in the culture with Chitosan than in the culture without Chitosan. The results showed that Chitosan inhibited the growwth of human fibroblast and stimulated the growth of human epidermal keratinocyte .
Objective To give a prel iminary experimental evidence and to prove chitosan and allogeneic morsel ized bone as potential bone substitutions in repairing rabbit radius segmental defect. Methods Chitosan and allogeneic morsel ized bone were mixed with various ratios (1 ∶ 5, 1 ∶ 10, 1 ∶ 25, 1 ∶ 50, and 1 ∶ 100). After preparation, the physicaland chemical properties of the composites were prel iminary detected; the composites at the ratios of 1 ∶ 50 and 1 ∶ 25 had good physical and chemical properties and were used for the animal experiment. The radius segmental defects of 15 mm in length were made in 50 adult New Zealand white rabbits (weighing 2.5-3.0 kg), then the animals were divided into 2 groups. In groups A and B, chitosan/allogeneic morsel ized bone composites were implanted at the ratio of 1 ∶ 50 and 1 ∶ 25, respectively. After 1, 2, 4, 8, and 12 weeks of operation, the gross, histological, immunohistochemical observations were performed. Before the rabbits were sacrified, X-ray films were taken; the serum calcium and alkal ine phosphatase (ALP) concentration were measured; and the biomechanical measurement was carried out at 12 weeks. Results The results of gross observation were essentially consistent with those of the X-ray films. The histological observation showed that the bone formation was earl ier in group A than in group B; the amount of new bone formation in group A was more than that in group B; and the bone forming area in group A was bigger than that in group B (P lt; 0.05) at 4 and 8 weeks after operation. The immunohistochemical staining showed that vascular endothel ial growth factor and insul in-l ike growth factor receptor II proteins expressed in the cytoplasm of 2 groups after 4 and 8 weeks, and the expression in group A was higher than that in group B (P lt; 0.05). There was no significant difference in the serum calcium concentration between 2 groups at each time point (P gt; 0.05). After 4 and 8 weeks, the ALP concentration in group A was significantly higher than that in group B (P lt; 0.05). After 12 weeks, the radius maximum bending loads of groups A and B were (299.75 ± 27.69) N and (278.54 ± 17.09) N, respectively, showing significant difference (t=4.045,P=0.002). Conclusion The composite of chitosan and allogeneic morsel ized bone has good osteogeneic activity and can beused as a bone tissue engineering scaffold, and the optimum ratio of chitosan to allogeneic morsel ized bone was 1 ∶ 50.
Objective To construct three kinds of collagen-chitosan porous scaffolds with enhanced biostability and to investigate the histocompatibility of the scaffolds in vivo. Methods Collagen-chitosan porous scaffolds were fabricated by freeze-drying method, cross-linked using dehydrothermal treatment and glutaraldehde, respectively. The morphology of the uncross-linked scaffold (scaffold1), dehydrothermally cross-linked scaffold (scaffold 2) and glutaraldehde crosslinked scaffold (scaffold 3) was studied by scanning electron microscopy. Threekinds of scaffolds were embedded subcutaneously on dorsal surface of 12 rabbit ears. The general and local responses were recorded daily. The biostability and histocompatibility of the scaffolds were observed by using HE staining after 3, 7, 14 and 28 days of operation. Results The scaffolds had three-dimensional porous structures with a porosity of more than 90%, and possessed pore sizes of 120±10 μm, 80±15 μm and 170±20 μm, respectively. All experimental rabbits survived with good general condition during the study. All skin incisions healed well without obvious reactive red or swelling. Histological study showed that scaffold 1 was degraded rapidly with obvious inflammation. The degradation of scaffold 2 was slower than that of scaffold 1 and the inflammation of scaffold 2 was also milder than that of scaffold 1. Scaffold 3 possessed slow degradation property with slight inflammatory reaction, and rapid tissue regeneration. Conclusion The collagenchitosan porous scaffolds have three-dimensional porous structures that are suitable for tissue regeneration. The biostability and histocompatiility of the scaffolds are enhanced after cross-linked. Glutaraldehde cross-linked is better than dehydrothermally cross-linked, which can facilitate dermal tissuereconstruction.
Objective To explore a way to make a new kind of chitosan-basedmicrosphere (MS), which can be used as a novel biodegradable haemostatic powder, and to confirm its haemostatic efficiency. MethodsChitosan(CTS), a haemostatic polysaccharide, was selected as a main material for the haemostatic powder; alginate (ALG), another haemostatic polysaccharide that has been found to be effective in promoting haemostasis in surgical procedures, was selected to be thecostar. The emulsification and the cross-link were chosen as a preparation process based on the interaction between the polysaccharides. The diameter of the prepared MS was determined by SPOS, and the surface of MS was observed under SEM. The swelling characteristics of MS in the simulative wound efflusion were investigated. In a splenic bleeding model in 6 rabbits, MS and Yunnanbaiyao were randomly used as a haemostatic agent, and the corresponding bleeding time was recorded. Results The MS prepared in the above-mentioned process was well proportioned and was similarly shaped. It became a kind of white powder after dehydration, and had a coralloid surface under SEM. The diameter of the MS was 4.05±2.55 μm, which was determined by SPOS. The swelling ratio of the MS was 280.139% within 5 min. The bleeding time was significantly decreased in the MStreated group (2.83±0.17 min) when compared with that in the control group (5.33±0.49 min)(P<0.01). Conclusion The CTS/ALG-MS, which is made from haemostatic biomaterials (CTS, ALG) by emulsification and the cross-link processes, can be provided with favorable haemostatic efficiency. It can be used as a novel haemostaticpowder.However, its biodegrading rate and mode still remain to be further studied.
An clinical and pharmacokinetic study for a drug delivery system (DDS) of gentamycin-loaded chitosan bar were carried out with the purpose to evaluate its efficacy and giving further data for its clinical applications. Eighteen cases of chronic osteomyelitis were treated by surgical necrectomy with implantation of gentamycin-load chitosan bar in the prepared bone cavity. After operation, the concentration of gentamycin in serum and wound drainage fluid were examined at different times and blood urea nitrogen (BUN) and serum creatinine (Cr) as well. The clinical results were evaluated by the conditions of wound healing and clinical and roentgenographic manifestations. The results showed that the serum gentamycin concentration reached its peak level (0.86 microgram/ml) at 24 hours after operation and lasted for 4 days. No increase in the concentrations of BUN and Cr were observed after implantation. The gentamycin concentration in wound drainage fluid was several hundred times higher than the minimum inhibitory concentration (MIC) for staphylococcus aureus. All of the 18 cases were followed up for 24.8 months (in an range of 6-34 months) 16 patients received initial cure and without any recurrence. So, it could be concluded that the gentamycin-loaded chitosan DDS was a simple and effective method for the treatment of chronic osteomylitis without the necessity to carry out a second operation to remove the drug carrier, and it was sound to popularize its clinical application.
To observe the effect of chitosan/alginate (CTS/ALG) dressings on wound immersed in seawater. Methods Twenty-five healthy SD rats weighing 250-300 g were used to establ ish skin wound model through cutting 1.8 cm circle-shaped wound along spine bilaterally. The left side served as experimental group, and the right side as control group. The wounds were immersed in the prepared artificial seawater for 1 hour, then the experimental group was treated with CTS/ALG dressings, while the control group was treated with sterile gauze. Gross observation was performed andwound heal ing time was recorded. At 3, 5, 7, 10 and 12 days after operation, 2 cm × 2 cm skin tissues including the wounds were removed and underwent HE staining and immunohistochemistry staining using Envision method. Histological change of wound and expression of EGF receptor (EGFR) and bFGF were observed. Results In the experimental group, wound inflammatory response was sl ight and incrustation shrinked faster, while the incrustation in the control group shrinked slowly. The wound heal ing time of the experimental group and the control group was (11.68 ± 0.57) and (12.51 ± 0.54) days, respectively, suggesting there was a significant difference between two groups (P lt; 0.05). In the experimental group, granulation tissue prol iferation, cell infiltration, collagen tissue prol iferation, wound shrinkage and epithel ization appeared at 3 days after operation; regularly l ined collagen tissue, complete epithel ization and occurrence of skin appendages were observed at 10 days after operation; complete wound heal ing was noted at 12 days after operation; while in the control group, at the corresponding time point, late cell infiltration and epithel ization were observed and granulation tissue with ulcer was noted. Immunohistochemistry observation: high expression of bFGF in vascular endothel ial cells and interstitial fibroblasts and high expression of EGFR in vascular endothel ial cells were observed in the experimental group at 3 and 5 days after operation, and their expressions were low at 7, 10 and 12 days after operation; while in the control group, there were no or low expression of bFGF and EGFR at the same time point. Conclusion CTS/ALG dressings can promote the heal ing of wound immersed in seawater, but its mechanism needsfurther study.