Objective To evaluate the phenomena of apoptosis and its relevant mechanism during ischemia-reperfusion period. Methods The published papers to explore the apoptotic phenomena and its mechanism in organs or tissues which experienced ischemia-reperfusion injury were reviewed. Results Apoptosis was common in ischemia-reperfusioned organ or tissue. The severity of apoptosis was influenced by many factors such as ischemia, hypoxia, oxygen free radials, intracellular free calcium ion overloading, various cytokines, et al; and also was regulated by bcl-2 family, caspase family and NF-κB,et al. Conclusion Apoptosis is a common phenomenum in ischemiareperfusioned organ or tissue which is affected and regulated by various factors.
Objective To study the interaction and mechanism of prostaglandin I2 (PGI2) receptor/thromboxane A2 (TxA2) receptor (IP/TP) and cyclooxygenase-2 (COX-2) in ischemia reperfusion injury after liver transplantation of rat. Methods Rats were randomly divided into three groups: control group (n=16), orthotropic liver transplantation group (n=32) and nimesulide intervention group (n=32). The samples were obtained at 3 h, 6 h, 12 h and 24 h after operation. The expressions of COX-2, IP and TP mRNA were detected by RT-PCR. Immunohistochemistry was used to detect the localization and expression of COX-2. Hematoxylin Eosin staining was used to classify the injury extent of liver. Serum ALT and AST levels were detected to evaluate the changes of liver enzyme. Results COX-2 protein expression detected by immunohistochemistry in orthotropic liver transplantation group mainly distributed in the district of liver sinusoidal endothelial cells, liver cells and macrophage cells, which was significantly higher than control group and nimesulide intervention group. Expressions of IP mRNA, TP mRNA and COX-2 mRNA in the orthotropic liver transplantation group were significantly increased than those in control group (P<0.05), and the ratio of IP/TP increased (P<0.05). Expressions of IP mRNA and TP mRNA in nimesulide intervention group were significantly lower than that in the orthotropic liver transplantation group at 6 h and 12 h after operation (P<0.05), and the ratio of IP/TP decreased at 3 h, 6 h and 24 h after operation (P<0.05). The expression of COX-2 mRNA in nimesulide intervention group was significantly lower than that in the orthotropic liver transplantation group at 6 h, 12 h and 24 h after operation. In orthotropic liver transplantation group liver injury was obvious by HE staining, and more severve than that in nimesulide intervention group. Serum AST (each time) and ALT (3 h, 6 h and 12 h) levels in the orthotropic liver transplantation group were significantly higher than that in control group and nimesulide intervention group (P<0.05) and peaked at 6 h after operation. Conclusion The balance of IP/TP takes part in and plays an important role in the ischemia reperfusion injury of liver transplantation. Changing imbalance of IP/TP may reduce liver transplantation ischemia reperfusion injury by inhibiting COX-2 expression.
Objective To determine whether the different durations and times of the ischemic preconditioning affect the effectiveness of the ischemic preconditioning. Methods Ninety male Wistar rats were randomly divided into the control group and the eight preconditioned groups of 10 rats each. A transverse rectus abdominis musculocutaneous flap (TRAM) was elevated in each rat. The flaps were preconditioned by clamping the pedicle and reperfusing for 5 or 10 minutes per cycle. This was repeated for one or two cycles. The controls were simply perfused for 30 minutes. Each flap was then subjected to 4 hours of the global ischemia. Three rats in each group were killed for anestimate of the water content in the muscle and for observation on the muscularstructure under microscope. The flap surface survival areas of the other rats were calculated on the 7th postoperative day by the computerized video planimetry. Results The water content in the muscle was evidently reduced. The mean survival area of the flap in every preconditioned group increased by2-3 times compared with that of the controls(P<0.001). The different proceduresof the ischemic preconditioning produced different protective effects. Conclusion The ischemic preconditioning is an available means to alleviate an ischemiareperfusion injury to the transverse rectus abdominis musculocutaneous flap in rats. The effect of the ischemic preconditioning is affected by the duration and time of the ischemic preconditioning.
This prospective animal study was designed to investigate the changes of plasma endothelin (ET) levels in acute necrotizing pancreatitis (ANP). Sprague-Dawley rats were randomly devided into 3 groups: acute necrotizing pancreatitis (ANP) group in which ANP was induced by infusion of 5% sodium taurocholate (STC) into biliopancreatic duct, sham operation (SO) group and platelet activating factor antagonist BN50739 (BN) group. Blood levels of ET and platelet activating factor (PAF) were detected. Pancreatic microcirculatory blood flow was measured and pancreatic histological scores were evaluated. Results showed that the pancreatic microcirculatory blood flow in ANP group was decreased to a great extent immediatly after induction of ANP and soon began to rise slowly for 3 hours and again decreased steadily after that. The blood levels of ET, PAF and histological scores in ANP group were significantly higher than those in SO group. In BN group, the blood flow was significantly improved and the levels of blood ET, PAF and histological scores were all significantly lower as compared to those in ANP group. It is concluded that ischemia/ reperfusion is present in the initiation of acute necrotizing pancreatitis induced by STC in the rat. This leads to injuries of endothelial cells and increase in the production of ET and PAF. I/R lesions,and interaction of ET and PAF lead to a vicious circle, thus augmenting the pathological changes in the pancreas.
This study was to observe the result in patients suffering from severe ischemia of legs with arterialization of the great saphenous vein. Eighty nine patients suffering from the disease were treated by bridging the autogenous cephalic vein or Gore-Tex artificial vessel between the great saphenous vein and the femoral or external iliac arteries. The results showed that the blood supply of the affected legs was increased immediately after operation. The ulcers of the toes and the plantar areas were healed gradually and the pain relieved. It was concluded that this method did not interfere with the reflux of the venous blood in the diseased limbs. This method was simple, safe and effective for treating severe ischemia of the lower limbs.
ObjectiveTo summarize recent researches on mechanism of the hepatic ischemic preconditioning (IPC) and its clinical applications on hepatectomy and liver transplantation. MethodsRelevant references about basic and clinical researches of hepatic IPC were collected and reviewed. ResultsRecent experimental researches indicated that IPC could relieve hepatic ischemiareperfusion injury (IRI) by remaining and improving energy metabolism of liver, regulating microcirculation disorder, decreasing the production of lipid peroxidation and oxyradical. It could also inhibit the activation of inflammatory cells and the release of cytokine, suppress cell apoptosis and induce the release of endogenous protective substance. Till now, most of the clinical researches had confirmed the protective function of hepatic IPC, but there were still some references with opposite opinions. ConclusionHepatic IPC could relieve liver IRI, but its clinical application value on hepatectomy and liver transplantation still need more researches to prove.
Objective To observe the influences of depolarized arrest and hyperpolarized arrest on alternation of fluidity of myocardial cell membrane during cardiopulmonary bypass (CPB) and evaluate the protective effects on myocardium of hyperpolarized arrest. Methods Seventy-two felines were randomized into three groups, each group 24. Control group: 180 minutes of CPB was conducted without aortic and vena caval cross-clamping. Depolarized arrest group: hearts underwent 60 minutes of global ischemia after aortic cross-clamping (ACC) followed by 90 minutes of reperfusion. The cardioplegic solution consisted of St. Thomas solution (K+16mmol/L). Hyperpolarized arrest group: the protocol was the same as that in depolarized arrest group except that the cardioplegic solution consisted of St.Thomas solution with pinacidil (50 mmol/L,K+5mmol/L). Microviscosity, the reciprocal of fluidity of myocardial membrane was measured in all groups by using fluorescence polarization technique. (Results )Microvis cosity of myocardial cell in depolarized arrest group during ACC period was significantly higher than that before ACC and kept on rising during reperfusion period. Microviscosity of myocardial cell in hyperpolarized arrest group during ACC was trending up and reperfusion periods as well, but markedly lower compared to that in depolarized arrest group at corresponding time points(Plt;0.01). Conclusion Hyperpolarized arrest is more effective in protecting myocardial cells from ischemia-reperfusion injury than depolarized arrest during CPB by maintaining better fluidity of myocardial membrane.
【Abstract】 Objective To study the effects of ischemic preconditioning (IP) on the activity of nuclear factor-κB (NF-κB) and the expressions of TNF-α and intercellular adhesion molecule-1 (ICAM-1) during early reperfusion following liver transplantation in rats. Methods The models of rat orthotopic liver transplantation were established. The donor livers were stored for 2 hours in Ringers solution at 4 ℃ before transplantation. All rats were randomly divided into sham operation group (SO group), control group and IP group. IP group was achieved by clamping the portal vein and hepatic artery of donor liver for 10 minutes followed by reperfusion for 10 minutes before harvesting. The activity of NF-κB and expressions of TNF-α and ICAM-1 at 1 h, 2 h, 4 h and 6 h after reperfusion were measured. Serum ALT, LDH were also determined. Results The liver function of recipients with IP were significantly improved. Compared with SO group, the graft NF-κB activity increased after transplantation in control group and IP group (P<0.05), while compared with control group that was significantly attenuated at 1 h and 2 h in IP group. Similarly, hepatic levels of TNF-α and ICAM-1 were significantly elevated in control group and were reduced in IP group. Conclusion IP might down-regulated TNF-α and ICAM-1 expression in the grafts after orthotopic liver transplantation through depressed NF-κB activation, and attenuate neutrophil infiltration in the grafts after reperfusion.
To elucidate the mechanism of renal injury following intestinal ischemia/reperfusion, reactive oxygen metabolites in kidney and plasma were examined in 20 rats following intestinal ischemia/reperfusion by measurement of lipid proxidation (LP).The plasma lipid peroxide concentration after reperfusion was higher than that of the contol group (P<0.01),the LP in kidney homogenate was also significantly higher (P<0.01) following intestinal ischemia/reperfusion.Our study suggests that reactive oxygen metabolites after intestinal ischemia/reperfusion plays an important role in kidney injury.
【Abstract】 Objective To investigate the effect of verapamil on apoptosis, calcium and expressions of bcl-2 and c-myc of pancreatic cells in ischemia-reperfusion rat model. Methods Wistar rats were randomly divided into three groups: control group (n=10); ischemia-reperfusion group (n=10); verapamil treatment group (n=10). The anterior mesenteric artery and the celiac artery of rats in both ischemia-reperfusion group and verapamil treatment group were occluded for 15 min followed by 12-hour reperfusion. Verapamil (1 mg/kg) was injected via caudal vein to the rats in verapamil treatment group 15 min before occlusion and 1 hour after the initiation of reperfusion, respectively; and ischemia-reperfusion group was given the same volume of salient twice intravenously. Pancreatic tissues were collected from the dead rats after twelve hours since the reperfusion. The pathologic characters of pancreatic tissue were observed under light microscope; The level of calcium in the tissue was measured by atomic absorption spectrometer; TUNEL was used to detect apoptosis of pancreatic cells; and the expressions of c-myc and bcl-2 in the cells were also analyzed by immunohistochemistry technique and flow cytometry. Results The pathologic change in verapamil treatment group was less conspicuous than that of ischemia-reperfusion group. Both the calcium level and the number of apoptotic cells in verapamil treatment group were less than those of ischemia-reperfusion group 〔(411.1±55.8) μg/g dry weight vs (470.9±31.9) μg/g dry weight, P<0.05 and (9.5±2.9)% vs (18.4±3.1)% 〕, P<0.05. After taking verapamil, the number of apoptotic cells decreased, whereas the expressions of bcl-2 and c-myc increased. The fluorescent indexes of bcl-2 and c-myc in verapamil treatment group were significantly higher than those of ischemia-reperfusion group (1.72±0.11 vs 1.41±0.07, P<0.05; 1.76±0.19 vs 1.55±0.13, P<0.05. Conclusion Ischemia-reperfusion injury can induce apoptosis of pancreatic cells. Verapamil could protect the injured pancreatic tissue by reducing the level of calcium, stimulating the expressions of bcl-2 and c-myc and inhibiting apoptosis of pancreatic cells.