The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.
ObjectiveTo systematically evaluate the dose-response relationship between coffee consumption and liver cancer risk. MethodsThe PubMed, Web of Science, Cochrane Library, EMbase, CNKI, VIP, WanFang Data, and CBM databases were searched from inception to December 2022. Two reviewers independently screened literature, extracted data and assessed the risk of bias of the included studies. Meta-analysis was then performed by using Stata 17.0 software. ResultsFifteen studies (11 cohort studies and 4 case-control studies) involving 557 259 participants were included. The results of meta-analysis showed that coffee consumption was significantly negatively associated with the risk of liver cancer (RR=0.39, 95%CI 0.27 to 0.57, P<0.01). The dose-response meta-analysis showed a non-linear dose-response relationship between coffee consumption and the risk of liver cancer (P<0.01). Compared with people who did not drink coffee, people who drank 1 cup of coffee a day had a 25% lower risk of liver cancer (RR=0.75, 95%CI 0.67 to 0.83), and people who drank 2 cups of coffee a day had a 38% lower risk of liver cancer (RR=0.62, 95%CI 0.56 to 0.70). The risk of liver cancer decreased by 45% (RR=0.55, 95%CI 0.48 to 0.62) for 3 cups of coffee and by 51% (RR=0.49, 95%CI 0.43 to 0.56) for 4 cups of coffee. ConclusionCurrent evidence suggests that there is a nonlinear dose-response relationship between coffee consumption and the risk of liver cancer. These results indicate that habitual coffee consumption is a protective factor for liver cancer. Due to the limited quality and quantity of the included studies, more high quality studies are needed to verify the above conclusion.
The diagnosis of pancreatic cancer is very important. The main method of diagnosis is based on pathological analysis of microscopic image of Pap smear slide. The accurate segmentation and classification of images are two important phases of the analysis. In this paper, we proposed a new automatic segmentation and classification method for microscopic images of pancreas. For the segmentation phase, firstly multi-features Mean-shift clustering algorithm (MFMS) was applied to localize regions of nuclei. Then, chain splitting model (CSM) containing flexible mathematical morphology and curvature scale space corner detection method was applied to split overlapped cells for better accuracy and robustness. For classification phase, 4 shape-based features and 138 textural features based on color spaces of cell nuclei were extracted. In order to achieve optimal feature set and classify different cells, chain-like agent genetic algorithm (CAGA) combined with support vector machine (SVM) was proposed. The proposed method was tested on 15 cytology images containing 461 cell nuclei. Experimental results showed that the proposed method could automatically segment and classify different types of microscopic images of pancreatic cell and had effective segmentation and classification results. The mean accuracy of segmentation is 93.46%±7.24%. The classification performance of normal and malignant cells can achieve 96.55%±0.99% for accuracy, 96.10%±3.08% for sensitivity and 96.80%±1.48% for specificity.