Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.
Hemispheric asymmetry is a fundamental organizing principle of the human brain. Answering the genetic effects of the asymmetry is a prerequisite for elucidating developmental mechanisms of brain asymmetries. Multi-modal magnetic resonance imaging (MRI) has provided an important tool for comprehensively interpreting human brain asymmetry and its genetic mechanism. By combining MRI data, individual differences in brain structural asymmetry have been investigated with quantitative genetic brain mapping using gene-heritability. Twins provide a useful natural model for studying the effects of genetics and environment on the brain. Studies based on MRI have found that the asymmetry of human brain structure has a genetic basis. From the perspective of quantitative genetic analysis, this article reviews recent findings on the genetic effects of asymmetry and genetic covariance between hemispheres from three aspects: the asymmetry of heritability, the heritability of asymmetry and the genetic correlation. At last, the article shows the limitations and future research directions in this field. The purpose of this systematic review is to quickly guide researchers to understand the origins and genetic mechanism of interhemispheric differences, and provide a genetic basis for further understanding and exploring individual differences in laterized cognitive behavior.
Magnetic resonance imaging (MRI) is an important medical imaging method, whose major limitation is its long scan time due to the imaging mechanism, increasing patients’ cost and waiting time for the examination. Currently, parallel imaging (PI) and compress sensing (CS) together with other reconstruction technologies have been proposed to accelerate image acquisition. However, the image quality of PI and CS depends on the image reconstruction algorithms, which is far from satisfying in respect to both the image quality and the reconstruction speed. In recent years, image reconstruction based on generative adversarial network (GAN) has become a research hotspot in the field of magnetic resonance imaging because of its excellent performance. In this review, we summarized the recent development of application of GAN in MRI reconstruction in both single- and multi-modality acceleration, hoping to provide a useful reference for interested researchers. In addition, we analyzed the characteristics and limitations of existing technologies and forecasted some development trends in this field.
Mild cognitive impairment (MCI) is a clinical transition state between age-related cognitive decline and dementia. Researchers can use neuroimaging and neurophysiological techniques to obtain structural and functional information about the human brain. Using this information researchers can construct the brain network based on complex network theory. The literature on graph theory shows that the large-scale brain network of MCI patient exhibits small-world property, which ranges intermediately between Alzheimer's disease and that in the normal control group. But brain connectivity of MCI patients presents topologically structural disorder. The disorder is significantly correlated to the cognitive functions. This article reviews the recent findings on brain connectivity of MCI patients from the perspective of multimodal data. Specifically, the article focuses on the graph theory evidences of the whole brain structural and functional and the joint covariance network disorders. At last, the article shows the limitations and future research directions in this field.
Clinically, non-contrastive computed tomography (NCCT) is used to quickly diagnose the type and area of stroke, and the Alberta stroke program early computer tomography score (ASPECTS) is used to guide the next treatment. However, in the early stage of acute ischemic stroke (AIS), it’s difficult to distinguish the mild cerebral infarction on NCCT with the naked eye, and there is no obvious boundary between brain regions, which makes clinical ASPECTS difficult to conduct. The method based on machine learning and deep learning can help physicians quickly and accurately identify cerebral infarction areas, segment brain areas, and operate ASPECTS quantitative scoring, which is of great significance for improving the inconsistency in clinical ASPECTS. This article describes current challenges in the field of AIS ASPECTS, and then summarizes the application of computer-aided technology in ASPECTS from two aspects including machine learning and deep learning. Finally, this article summarizes and prospects the research direction of AIS-assisted assessment, and proposes that the computer-aided system based on multi-modal images is of great value to improve the comprehensiveness and accuracy of AIS assessment, which has the potential to open up a new research field for AIS-assisted assessment.
In recent years, deep learning has provided a new method for cancer prognosis analysis. The literatures related to the application of deep learning in the prognosis of cancer are summarized and their advantages and disadvantages are analyzed, which can be provided for in-depth research. Based on this, this paper systematically reviewed the latest research progress of deep learning in the construction of cancer prognosis model, and made an analysis on the strengths and weaknesses of relevant methods. Firstly, the construction idea and performance evaluation index of deep learning cancer prognosis model were clarified. Secondly, the basic network structure was introduced, and the data type, data amount, and specific network structures and their merits and demerits were discussed. Then, the mainstream method of establishing deep learning cancer prognosis model was verified and the experimental results were analyzed. Finally, the challenges and future research directions in this field were summarized and expected. Compared with the previous models, the deep learning cancer prognosis model can better improve the prognosis prediction ability of cancer patients. In the future, we should continue to explore the research of deep learning in cancer recurrence rate, cancer treatment program and drug efficacy evaluation, and fully explore the application value and potential of deep learning in cancer prognosis model, so as to establish an efficient and accurate cancer prognosis model and realize the goal of precision medicine.
Accurate segmentation of ground glass nodule (GGN) is important in clinical. But it is a tough work to segment the GGN, as the GGN in the computed tomography images show blur boundary, irregular shape, and uneven intensity. This paper aims to segment GGN by proposing a fully convolutional residual network, i.e., residual network based on atrous spatial pyramid pooling structure and attention mechanism (ResAANet). The network uses atrous spatial pyramid pooling (ASPP) structure to expand the feature map receptive field and extract more sufficient features, and utilizes attention mechanism, residual connection, long skip connection to fully retain sensitive features, which is extracted by the convolutional layer. First, we employ 565 GGN provided by Shanghai Chest Hospital to train and validate ResAANet, so as to obtain a stable model. Then, two groups of data selected from clinical examinations (84 GGN) and lung image database consortium (LIDC) dataset (145 GGN) were employed to validate and evaluate the performance of the proposed method. Finally, we apply the best threshold method to remove false positive regions and obtain optimized results. The average dice similarity coefficient (DSC) of the proposed algorithm on the clinical dataset and LIDC dataset reached 83.46%, 83.26% respectively, the average Jaccard index (IoU) reached 72.39%, 71.56% respectively, and the speed of segmentation reached 0.1 seconds per image. Comparing with other reported methods, our new method could segment GGN accurately, quickly and robustly. It could provide doctors with important information such as nodule size or density, which assist doctors in subsequent diagnosis and treatment.