west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "QIN Yufang" 2 results
  • Synergistic drug combination prediction in multi-input neural network

    Synergistic effects of drug combinations are very important in improving drug efficacy or reducing drug toxicity. However, due to the complex mechanism of action between drugs, it is expensive to screen new drug combinations through trials. It is well known that virtual screening of computational models can effectively reduce the test cost. Recently, foreign scholars successfully predicted the synergistic value of new drug combinations on cancer cell lines by using deep learning model DeepSynergy. However, DeepSynergy is a two-stage method and uses only one kind of feature as input. In this study, we proposed a new end-to-end deep learning model, MulinputSynergy which predicted the synergistic value of drug combinations by integrating gene expression, gene mutation, gene copy number characteristics of cancer cells and anticancer drug chemistry characteristics. In order to solve the problem of high dimension of features, we used convolutional neural network to reduce the dimension of gene features. Experimental results showed that the proposed model was superior to DeepSynergy deep learning model, with the mean square error decreasing from 197 to 176, the mean absolute error decreasing from 9.48 to 8.77, and the decision coefficient increasing from 0.53 to 0.58. This model could learn the potential relationship between anticancer drugs and cell lines from a variety of characteristics and locate the effective drug combinations quickly and accurately.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • SMILESynergy: Anticancer drug synergy prediction based on Transformer pre-trained model

    The synergistic effect of drug combinations can solve the problem of acquired resistance to single drug therapy and has great potential for the treatment of complex diseases such as cancer. In this study, to explore the impact of interactions between different drug molecules on the effect of anticancer drugs, we proposed a Transformer-based deep learning prediction model—SMILESynergy. First, the drug text data—simplified molecular input line entry system (SMILES) were used to represent the drug molecules, and drug molecule isomers were generated through SMILES Enumeration for data augmentation. Then, the attention mechanism in the Transformer was used to encode and decode the drug molecules after data augmentation, and finally, a multi-layer perceptron (MLP) was connected to obtain the synergy value of the drugs. Experimental results showed that our model had a mean squared error of 51.34 in regression analysis, an accuracy of 0.97 in classification analysis, and better predictive performance than the DeepSynergy and MulinputSynergy models. SMILESynergy offers improved predictive performance to assist researchers in rapidly screening optimal drug combinations to improve cancer treatment outcomes.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content