west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHAO Dechun" 2 results
  • Research on Parkinson’s disease recognition algorithm based on sample enhancement

    Parkinson’s disease patients have early vocal cord damage, and their voiceprint characteristics differ significantly from those of healthy individuals, which can be used to identify Parkinson's disease. However, the samples of the voiceprint dataset of Parkinson's disease patients are insufficient, so this paper proposes a double self-attention deep convolutional generative adversarial network model for sample enhancement to generate high-resolution spectrograms, based on which deep learning is used to recognize Parkinson’s disease. This model improves the texture clarity of samples by increasing network depth and combining gradient penalty and spectral normalization techniques, and a family of pure convolutional neural networks (ConvNeXt) classification network based on Transfer learning is constructed to extract voiceprint features and classify them, which improves the accuracy of Parkinson’s disease recognition. The validation experiments of the effectiveness of this paper’s algorithm are carried out on the Parkinson’s disease speech dataset. Compared with the pre-sample enhancement, the clarity of the samples generated by the proposed model in this paper as well as the Fréchet inception distance (FID) are improved, and the network model in this paper is able to achieve an accuracy of 98.8%. The results of this paper show that the Parkinson’s disease recognition algorithm based on double self-attention deep convolutional generative adversarial network sample enhancement can accurately distinguish between healthy individuals and Parkinson’s disease patients, which helps to solve the problem of insufficient samples for early recognition of voiceprint data in Parkinson’s disease. In summary, the method effectively improves the classification accuracy of small-sample Parkinson's disease speech dataset and provides an effective solution idea for early Parkinson's disease speech diagnosis.

    Release date: Export PDF Favorites Scan
  • Research on fault diagnosis of patient monitor based on text mining

    The conventional fault diagnosis of patient monitors heavily relies on manual experience, resulting in low diagnostic efficiency and ineffective utilization of fault maintenance text data. To address these issues, this paper proposes an intelligent fault diagnosis method for patient monitors based on multi-feature text representation, improved bidirectional gate recurrent unit (BiGRU) and attention mechanism. Firstly, the fault text data was preprocessed, and the word vectors containing multiple linguistic features was generated by linguistically-motivated bidirectional encoder representation from Transformer. Then, the bidirectional fault features were extracted and weighted by the improved BiGRU and attention mechanism respectively. Finally, the weighted loss function is used to reduce the impact of class imbalance on the model. To validate the effectiveness of the proposed method, this paper uses the patient monitor fault dataset for verification, and the macro F1 value has achieved 91.11%. The results show that the model built in this study can realize the automatic classification of fault text, and may provide assistant decision support for the intelligent fault diagnosis of the patient monitor in the future.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content