west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biomechanic" 96 results
  • Screening the Optimal Time of Sinusoidal Alternating Electromagnetic Field for the Bone Biomechanical Properties of Rat

    The present research is to investigate the time effect of sinusoidal electromagnetic fields (SEMFs) at different exposure time on the biomechanical properties in rats, and to find a best time for improving biomechanical properties. Forty female SD rats were randomly divided into five groups, i.e. control group, 45 min SEMFs group, 90 min SEMFs group, 180 min SEMFs group, and 270 min SEMFs group. In addition to the control group, other groups were exposed to 50 Hz and 0.1 mT magnetic field every day for the corresponding time periods. After eight weeks, bone mineral density (BMD), bone biomechanics, bone tissue morphology, micro-CT and pathological examination were performed. The results showed that there was no abnormal pathological finding in the experimental groups. In the 90 min SEMFs group, BMD, femur maximum load, elastic modulus, yield strength, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular area (Tb.Ar) percentage were all significantly higher than those in the control group (P<0.01), and trabecular separation (Tb.Sp) was significantly lower than that of the control group (P<0.01). However, for other experimental groups, some indices showed statistical significance compared to the control group (P<0.05), but some did not (P>0.05). This study showed that under 50 Hz and 0.1 mT SEMFs, 90 min is the best time that can effectively increase bone mineral density, improve the bone tissue microstructure organization and the biomechanical properties.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
  • Biomechanical effect of anteromedial coronoid facet fracture and lateral collateral ligament complex injury on posteromedial rotational stability of elbow

    Objective To investigate the effect of anteromedial coronoid facet fracture and lateral collateral ligament complex (LCLC) injury on the posteromedial rotational stability of the elbow joint. Methods The double elbows were obtained from 4 fresh adult male cadaveric specimens. Complete elbow joint (group A,n=8), simple LCLC injury (group B,n=4), simple anteromedial coronoid facet fracture (group C,n=4), and LCLC injury combined with anteromedial coronoid facet fracture (group D,n=8). The torque value was calculated according to the load-displacement curve. Results There was no complete dislocation of the elbow during the experiment. The torque values of groups A, B, C, and D were (10.286±0.166), (5.775±0.124), (6.566±0.139), and (3.004±0.063) N·m respectively, showing significant differences between groups (P<0.05). Conclusion Simple LCLC injury, simple anteromedial coronoid facet fracture, and combined both injury will affect the posteromedial rotational stability of the elbow.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
  • Research progress on biomechanics for internal fixation in tibial plateau fracture

    Objective To review the biomechanical research progress of internal fixation of tibial plateau fracture in recent years and provide a reference for the selection of internal fixation in clinic. Methods The literature related to the biomechanical research of internal fixation of tibial plateau fracture at home and abroad was extensively reviewed, and the biomechanical characteristics of the internal fixation mode and position as well as the biomechanical characteristics of different internal fixators, such as screws, plates, and intramedullary nails were summarized and analyzed. Results Tibial plateau fracture is one of the common types of knee fractures. The conventional surgical treatment for tibial plateau fracture is open or closed reduction and internal fixation, which requires anatomical reduction and strong fixation. Anatomical reduction can restore the normal shape of the knee joint; strong fixation provides good biomechanical stability, so that the patient can have early functional exercise, restore knee mobility as early as possible, and avoid knee stiffness. Different internal fixators have their own biomechanical strengths and characteristics. The screw fixation has the advantage of being minimally invasive, but the fixation strength is limited, and it is mostly applied to Schatzker typeⅠfracture. For Schatzker Ⅰ-Ⅳ fracture, unilateral plate fixation can be used; for Schatzker Ⅴand Ⅵ fracture, bilateral plates fixation can be used to provide stronger fixation strength and avoid the stress concentration. The intramedullary nails fixation has the advantages of less trauma and less influence on the blood flow of the fracture end, but the fixation strength of the medial and lateral plateau is limited; so it is more suitable for tibial plateau fracture that involves only the metaphysis. Choosing the most appropriate internal fixation according to the patient’s condition is still a major difficulty in the surgical treatment of tibial plateau fractures. Conclusion Each internal fixator has good fixation effect on tibial plateau fracture within the applicable range, and it is an important research direction to improve and innovate the existing internal fixator from various aspects, such as manufacturing process, material, and morphology.

    Release date:2024-01-12 10:19 Export PDF Favorites Scan
  • Research progress in biomechanics of common internal fixation for femoral neck fracture

    ObjectiveTo summarize the characteristics and biomechanical research progress of common internal fixation for femoral neck fractures in recent years, so as to provide reference to clinical treatment of femoral neck fracture. Methods The domestic and foreign relevant literature on biomechanics of internal fixation of femoral neck fracture in recent years was reviewed, and the biomechanical research progress was summarized. Results Among the internal fixations currently used in the treatment of femoral neck fractures, three cannulated screws can provide sliding compression at the end of the fracture, but the shear resistance is weak, and the risk of long-term internal fixation failure is high; dynamic hip screw and proximal femoral locking plate have excellent angle stability and overall strength; medial buttress plate can transform vertical shear force into compressive stress to promote fracture healing and produce a certain anti-rotation effect; femoral neck system can support the fracture in multi-axial direction, with excellent anti-rotation and anti-shortening properties; and cephalomedullary nails have high overall strength and failure load. Different internal fixations have their own indications due to differences in structure and biomechanics. ConclusionAt present, there is no detailed standard guidance of internal fixation selection. Clinically, the appropriate treatment should be selected according to the fracture types of patients.

    Release date:2022-08-04 04:33 Export PDF Favorites Scan
  • Finite-element Investigation on Center of Resistance of Maxillary Anterior Teeth

    A three-dimensional finite element model of premaxillary bone and anterior teeth was established with ANSYS 13.0. The anterior teeth were fixed with strong stainless labial archwire and lingual frame. In the horizontal loading experiments, a horizontal retraction force of 1.5 N was applied bilaterally to the segment through hooks at the same height between 7 and 21 mm from the incisal edge of central incisor; in vertical loading experiments, a vertical intrusion force of 1.5 N was applied at the midline of lingual frame with distance between 4 and 16 mm from the incisal edge of central incisor. After loading, solution was done and displacement and maximum principle stress were calculated. After horizontal loading, lingual displacement and stress in periodontal membrane (PDM) was most homogeneous when the traction force was 14 mm from the edge of central incisor; after vertical loading, intrusive displacement and stress in PDM were most homogeneous when the traction force was 12 mm from the incisal edge of central incisor. The results of this study suggested that the location of center of resistance (CRe) of six maxillary anterior teeth is about 14 mm gingivally and 12 mm lingually to incisal edge of central incisor. The location can provide evidence for theoretical and clinical study in orthodontics.

    Release date: Export PDF Favorites Scan
  • Review of studies on the application of biomechanical factors in the evaluation of glaucoma

    There are so many biomechanical risk factors related with glaucoma and their relationship is much complex. This paper reviewed the state-of-the-art research works on glaucoma related mechanical effects. With regards to the development perspectives of studies on glaucoma biomechanics, a completely novel biomechanical evaluation factor -- Fractional Flow Reserve (FPR) for glaucoma was proposed, and developing clinical application oriented glaucoma risk assessment algorithm and application system by using the new techniques such as artificial intelligence and machine learning were suggested.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Imaging and biomechanics researches of reconstructing lumbosacral stability after L5 vertebrectomy via anterolateral approach

    Objective To investigate the feasibility of anterolateral approach for L5 vertebral resection, bone grafting, and screw rod fixation by imaging and biomechanics researches. Methods Twenty formalized adult cadavers (12 males and 8 females) were randomly divided into 2 groups; L5 vertebral resection, bone graft, and screw rod fixation was performed on 10 specimens by using anterolateral approach (experimental group), and on the other 10 specimens by combined anterior and posterior approach. CT scanning and three-dimensional reconstruction were performed in the experimental group; preoperative maximal safe entry angle and depth of screws and intraoperative actual entry angle and depth of screws were measured; the sacral screw position was observed after operation. The biomechanical test was done in 2 groups. Results Twenty specimens smoothly underwent L5 excision and reconstruction. CT scan showed that there was no significant difference in maximal safe entry angle and depth of screws between males and females in experimental group before operation (P>0.05); the maximal safe entry angle and depth were 51.93° and 47.88 mm for anterior screw, and were 37.04° and 46.28 mm for posterior screw. After operation, depth of the sacral anterior and posterior screws were appropriate, which did not pierce into the spinal canal. The biomechanical test results indicated that the flexion, extension, and lateral flexion displacements, and vertical compression stiffness showed no significant difference between 2 groups (P>0.05). Conclusion For L5 lesions not invading posterior column, to use L5 vertebral resection, bone graft, and screw rod fixation by anterolateral approach is a safe and feasible method to reconstruct lumbosacral stability, with the advantages of no changing posture, less operation time and incision, and prevention of bone graft shift, but effectiveness need further be identified.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
  • Development of on-line lateral stiffness measurement system for anterior cruciate ligament and its influence on anterior cruciate ligament reconstruction

    The anterior cruciate ligament (ACL) reconstruction mostly relies on the experience of surgeons. To improve the effectiveness and adaptability of the tension after ACL reconstruction in knee joint rehabilitation, this paper establishes a lateral force measurement model with relaxation characteristics and designs an on-line stiffness measurement system of ACL. In this paper, we selected 20 sheep knee joints as experimental material for the knee joint stability test before the ACL reconstruction operation, which were divided into two groups for a comparative test of single-bundle ACL reconstruction through the anterolateral approach. The first group of surgeons carried out intraoperative detection with routine procedures. The second group used ACL on-line stiffness measurement system for intraoperative detection. After that, the above two groups were tested for postoperative stability. The study results show that the tension accuracy is (− 2.3 ± 0.04)%, and the displacement error is (1.5 ± 1.8)%. The forward stability, internal rotation stability, and external rotation stability of the two groups were better than those before operation (P < 0.05). But the data of the group using the system were closer to the preoperative knee joint measurement index, and there was no significant difference between them (P > 0.05). The system established in this paper is expected to help clinicians judge the ACL reconstruction tension in the operation process and effectively improve the surgical effect.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Biomechanical study of a newly-designed Y type pedicle screw in osteoporotic synthetic bone

    Objective To evaluate the biomechanical stability of a newly-designed Y type pedicle screw (YPS) in osteoporotic synthetic bone. Methods The osteoporotic synthetic bone were randomly divided into 3 groups (n=20). A pilot hole, 3.0 mm in diameter and 30.0 mm in deep, was prepared in these bones with the same method. The YPS, expansive pedicle screw (EPS), and bone cement-injectable cannulated pedicle screw (CICPS) were inserted into these synthetic bone through the pilot hole prepared. X-ray film examination was performed after 12 hours; the biomechanical stability of YPS, EPS, and CICPS groups was tested by the universal testing machine (E10000). The test items included the maximum axial pullout force, the maximum running torque, and the maximum periodical anti-bending. Results X-ray examination showed that in YPS group, the main screw and the core pin were wrapped around the polyurethane material, the core pin was formed from the lower 1/3 of the main screw and formed an angle of 15° with the main screw, and the lowest point of the inserted middle core pin was positioned at the same level with the main screw; in EPS group, the tip of EPS expanded markedly and formed a claw-like structure; in CICPS group, the bone cement was mainly distributed in the front of the screw and was dispersed in the trabecular bone to form a stable screw-bone cement-trabecular complex. The maximum axial pullout force of YPS, EPS, and CICPS groups was (98.43±8.26), (77.41±11.41), and (186.43±23.23) N, respectively; the maximum running torque was (1.42±0.33), (0.96±0.37), and (2.27±0.39) N/m, respectively; and the maximum periodical anti-bending was (67.49±3.02), (66.03±2.88), and (143.48±4.73) N, respectively. The above indexes in CICPS group were significantly higher than those in YPS group and EPS group (P<0.05); the maximum axial pullout force and the maximum running torque in YPS group were significantly higher than those in EPS group (P<0.05), but there was no significant difference in the maximum periodical anti-bending between YPS group and EPS group (P>0.05). Conclusion Compared with EPS, YPS can effectively enhance the maximum axial pullout force and maximum rotation force in the module, which provides a new idea for the design of screws and the choice of different fixation methods under the condition of osteoporosis.

    Release date:2017-10-10 03:58 Export PDF Favorites Scan
  • Effects of Madder on Bone Biomechanical Property in Rats

    Bones are stained into red color with feeding madder, but we do not know whether the fed madder can change the bone biomechanical properties and bone mineral contents in animals. In this research, we established a rat model with feeding madder. The bone biomechanical properties were detected by universal material mechanics, bone mineral contents were detected by inductively coupled plasma mass spectrometry and spectrometer, and red color material in bone was analyzed by high performance liquid chromatography. The results showed that bone biomechanical parameters in femur diaphysis in the 10% and 15% group rats were significantly higher than those in the control group after feeding madder for 6 months. The level of calcium, magnesium and zinc in femur diaphysis in 10% and 15% group rats were higher than those in the control group after feeding madder for 6 months. However, it was shown that the kidney congestion andhyperemia and the level of blood urea nitrogen and creatinine in the 15% group rats were significantly different compared to those in the control group rats after feeding madder for 6 months. The red colored material in bone is related to alizarin analyzed with high-performance liquid chromatography. The conclusion could be drawn that feeding 10% madder in diet was not toxic to the rats fed for 6 months, and it could improve bone biomechanical properties and increase bone mineral elements.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
10 pages Previous 1 2 3 ... 10 Next

Format

Content