west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "chitosan" 35 results
  • Effect of water soluble chitosan on the apoptosis of peritoneal macrophage induced by lipopolysaccharides

    Objective To study the effect of water soluble chitosan (WSC) on the apoptosis of peritoneal macrophage induced by lipopolysaccharides (LPS), and discuss the mechanism. Methods Peritoneal macrophages were divided to three groups: phosphate buffered saline (PBS) group, LPS group and LPS plus WSC group. At hour 24, apoptosis cell and active caspase-3 were detected by flow cytometry; nitric oxide (NO) was determined with Griess reagent. Results There were more apoptosis cells in the LPS group than the PBS group. The percentage of apoptosis cells was significantly decreased in the LPS plus WSC group than the LPS group. The expression of active caspase-3 and the secretion of NO were also inhibited by WSC after LPS intervention. Conclusion WSC inhibits apoptosis of peritoneal macrophage induced by LPS.

    Release date:2017-01-18 08:50 Export PDF Favorites Scan
  • PREVENTION EFFECT OF HYDROXYBUTYL CHITOSAN ON PERITONEAL ADHESION IN RATS

    To explore the effect of hydroxybutyl chitosan on the prevention of postoperative peritoneal adhesion in rats. Methods Ninety SD rats (half males and half females) weighing 250-280 g underwent laparotomy with subsequent cecal wall abrasion and peritoneal adhesion. Rats were randomized into 3 groups (n=30 per group): group A, injection of 2 mL hydroxybutyl chitosan solution (2%); group B, injection of 2 mL sodium hyaluronate solution(2%); group C, the abdomen of rat was exposed for 30 seconds and served as control group. The general condition of the rats was observed after operation. The rats were killed 2 and 4 weeks after operation, 15 rats per group at a time, to undergo gross and histologyobservation. The degree of adhesion was evaluated by double-bl ind method. The microstructure of injured electroscope cecal wall in groups A and C was observed with transmission electroscope 4 weeks after operation. Results All rats survived till the end of experiment. At 2 weeks after operation, the adhesion and the hyperplasia of fibrous connective tissue and collagen in groups A and B were sl ight while the adhesion in group C was serious with severe hyperplasia of fibrous connective tissue. According to the measurement classification by Nair histological grading, the difference between groups A and B and group C was significant (P lt; 0.05), while no significant difference was evident between group A and group B (P gt; 0.05). At 4 weeks after operation, the adhesion in group A was mild, and the hyperplasia of fibrous connective tissue and collagen were sl ight; the adhesion and the hyperplasia of fibrous connective tissue and collagen in group C were serious. The levels of group B were between group A and group C. The differences among three groups were significant (P lt; 0.05). Transmission electroscope showed inactive fibroblasts and loose thin collagen fibers in group A, and active fibroblasts and closely collagen fibers arranged in a disorderly manner in group C. Conclusion Hydroxybutyl chitosan can decrease the hyperplasia of fibrous connective tissue and inhibit the activity of fibroblasts significantly, and has a long-term role of preventing peritoneal adhesion.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • Promotion of Rat Skin Healing by Using Natural Polymer Chitosan Derivatives

    We in the present study observed the effect of N-fructose modified chitosan quaternary ammonium derivativeson on rat skin wound healing through animal experiments. Forty rats were randomly divided into eight groups (5 in each group). Four groups among the all 8 groups were the experimental groups, while the other 4 groups were the control groups. Next to the skin along the back of the spine, 1.50 cm×2.00 cm×0.16 cm full-thickness skin was cut to make an excision wound model for every rat. Those in the experimental groups were treated with the N-fructose-modified chitosan quaternary ammonium derivatives ointment dressing the wound, while those in the control groups with sterile medical vaseline processing. We dressed the wounds twice a day to observe the wound healing of all rats in different groups. We then observed the wound healing and wound pathology after 3, 7, 10, 15 days respectively in different groups. Results showed significant differences of the time of wound healing, area of wound healing and volume of wound healing between the experimental groups and control groups (P<0.05). It can be well concluded that N-fructose-modified chitosan quaternary ammonium derivatives does not harm the skin, but could promote skin healing, so that they could be suitable skin repair materials and ideal raw materials for medical dressing.

    Release date: Export PDF Favorites Scan
  • Applications of marine-derived chitosan and alginates in biomedicine

    Marine-derived biopolymers are excellent raw materials for biomedical products due to their abundant resources, good biocompatibility, low cost and other unique functions. Marine-derived biomaterials become a major branch of biomedical industry and possess promising development prospects since the industry is in line with the trend of " green industry and low-carbon economy”. Chitosan and alginates are the most commonly commercialized marine-derived biomaterials and have exhibited great potential in biomedical applications such as wound dressing, dental materials, antibacterial treatment, drug delivery and tissue engineering. This review focuses on the properties and applications of chitosan and alginates in biomedicine.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • A PRELIMINARY STUDY OF HIGH VISCOUS CHITOSAN/GLYCEROL PHOSPHATE WITH DEMINERALIZED BONE MATRIX TO REPAIR CARTILAGE DEFECTS IN RABBITS

    Objective To evaluate the effect of implantation of the complex of high viscous chitosan/glycerol phosphate with demineral ized bone matrix (HV-C/GP-DBM) in repairing cartilage defects of rabbits. Methods HV-C/ GPDBM was prepared by compounding HV-C/GP and DBM by 2:1 (W/W). Twenty-four 34-week-old New Zealand white adult rabbits, weighing 3.5-4.5 kg, were included. A bit with the diameter of 3.5 mm was used to drill 3-cm-deep holes in both sides of femoral condyle to make cartilage defects. The complex of HV-C/GP-DBM was then injected into the right holes as the experimental group and the left ones serve as the control group. The rabbits were killed at 4, 8 and 16 weeks after theoperation, respectively. The obtained specimens were observed macroscopically, microscopically and histologically. According to the International Cartilage Repair Society Histological Scoring (ICRS), the effect of cartilage repair was assessed at 16 weeks postoperatively. Results At 4-8 weeks postoperatively, in the experimental group, the defects were filled with hyal ine cartilage-l ike tissues; the majority of chitosan degradated; and the DBM particles were partly absorbed. However, in the control group, there were small quantities of discontinuous fibrous tissues and maldistributed chondrocytes at the border and the bottom of the defects. At 16 weeks postoperatively, 6 joints in the experimental group had smooth surface, and the defects were basically repaired by hyal ine cartilage-l ike tissues. The newly-formed tissues integrated well with the surrounding area. Under the cartilage, the new bone formation was still active and some DBM particles could be seen. However, the defects in the control group were repaired by fibrous tissues. The result of histological scoring of the specimens at 16 weeks showed that a total of 6 aspects including formation of chondrocytes and integration with the surrounding cartilages were superior in the experimental group to those in the control group, and there were significant differences between the two groups (P lt; 0.05). Conclusion The biodegradable and injectable complex of HV-C/GP-DBM with good histocompatibil ity and non-toxic side effects can repair cartilage defects and is a promising biomaterial for cartilage defect repair.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • In vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit

    ObjectiveTo investigate the in vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit, so as to provide a new scaffold material for the construction of tissue engineered nerve.MethodsThe nano polypyrrole (PPy) was synthesized by microemulsion polymerization, blended with chitosan, and then formed conduit by injecting the mixed solution into a customized conduit formation model. After freeze-drying and deacidification, the nano PPy/chitosan composite conduit (CP conduit) was prepared. Then the CP conduits with different acetyl degree were resulted undergoing varying acetylation for 30, 60, and 90 minutes (CAP1, CAP2, CAP3 conduits). Fourier infrared absorption spectrum and scanning electron microscopy (SEM) were used to identify the conduits. And the conductivity was measured by four-probe conductometer. The above conduits were implanted after the subcutaneous fascial tunnels were made symmetrically on both sides of the back of 30 female Sprague Dawley rats. At 2, 4, 6, 8, 10, and 12 weeks after operation, the morphology, the microstructure, and the degradation rate were observed and measured to assess the in vivo degradation of conduits. HE staining and anti-macrophage immunofluorescence staining were performed to observe the histocompatibility in vivo.ResultsThe characteristic peaks of the amide Ⅱ band around 1 562 cm−1 appeared after being acetylated, indicating that the acetylation modification of chitosan was successful. There was no significant difference in conductivity between conduits (P>0.05). SEM observation showed that the surfaces of the conduits in all groups were similar with relatively smooth surface and compact structure. After the conduits were implanted into the rats, with the extension of time, all conduits were collapsed, especially on the CAP3 conduit. All conduits had different degrees of mass loss, and the higher the degree of acetylation, the greater the mass change (P<0.05). SEM observation showed that there were more pores at 12 weeks after implantation, and the pores showed an increasing trend as the degree of acetylation increased. Histological observation showed that there were more macrophages and lymphocytes infiltration in each group at the early stage. With the extension of implantation time, lymphocytes decreased, fibroblasts increased, and collagen fibers proliferated significantly. ConclusionThe modified chitosan basedon conductive composite nerve conduit made of nano-PPy/chitosan composite with different acetylation degrees has good biocompatibility, conductivity, and biodegradability correlated with acetylation degree in vivo, which provide a new scaffold material for the construction of tissue engineered nerve.

    Release date:2021-06-30 03:55 Export PDF Favorites Scan
  • EFFECT OF CARBOXYMETHYLATED CHITOSAN ON PROLIFERATION AND SYNTHESIS OF NEUROTROPHIC FACTORS IN Schwann CELLS IN VITRO

    Objective To investigate the effect of carboxymethylated chitosan (CMCS) on the proliferation, cell cycle, and secretion of neurotrophic factors in cultured Schwann cells (SCs). Methods SCs were obtained from sciatic nerves of 20 Sprague Dawley rats (3-5 days old; male or female; weighing, 25-30 g) and cultured in vitro, SCs were identified and purified by immunofluorescence against S-100. The cell counting kit 8 (CCK-8) assay was used to determine the proliferation of SCs. The SCs were divided into 4 groups: 50 μg/mL CMCS (group B), 100 μg/mL CMCS (group C), 200 μg/mL CMCS (group D), and the same amount of PBS (group A) were added. The flow cytometry was used to analyze the cell cycle of SCs; the real-time quantitative PCR and Western blot analysis were used to detect the levels of never growth factor (NGF) and ciliary neurotrophic factor (CNTF) in cultured SCs induced by CMCS. Results The purity of cultured SCs was more than 90% by immunofluorescence against S-100; the CCK-8 results indicated that CMCS in concentrations of 10-1 000 μg/mL could promote the proliferation of SCs, especially in concentrations of 200 and 500 μg/mL (P lt; 0.01), but no significant difference was found between 200 and 500 μg/mL (P gt; 0.05). CMCS at a concentration of 200 μg/mL for 24 hours induced the highest proliferation, showing significant difference when compared with that at 0 hour (P lt; 0.01). The percentage of cells in phase S and the proliferation index were significantly higher in groups B, C, and D than in group A (P lt; 0.05), in groups C and D than in group B (P lt; 0.05); and there was no significant difference between group C and group D (P gt; 0.05). Real-time quantitative PCR and Western blot results showed that the levels of NGF and CNTF in groups B, C, and D were significantly higher than those in group A (P lt; 0.05), especially in group D. Conclusion CMCS can stimulate the proliferation, and induce the synthesis of neurotrophic factors in cultured SCs.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • VANCOMYCIN CATIONIC LIPOSOME COMBINED WITH NANO-HYDROXYAPATITE/CHITOSAN/KONJACGLUCOMANNAN SCAFFOLD FOR TREATMENT OF INFECTED BONE DEFECTS IN RABBITS

    【Abstract】 Objective To investigate the anti-infection and bone repair effects of cationic l i posome-encapsulatedvancomycin combined with the nano-hydroxyapatite/chitosan/konjac glucomannan (n-HA/CS/KGM) composite scaffold invivo. Methods Fifty-one 6-month-old New Zealand white rabbits, weighing 1.5-3.0 kg, were selected to prepare chronicinfectious tibia bone defect model by using Staphylococcus aureus. After 4 weeks, 48 survival rabbits were randomly divided into 4 groups (n=12). After debridement, defect was treated with nothing in group A, with n-HA/CS/KGM composite scaffold in group B, with vancomycin and n-HA/CS/KGM composite scaffold in group C, and with cationic l i posome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold in group D. After 8 weeks of treatment, general observation, X-ray, HE staining, the bacterial culture, and the measurement of the longest diameter of bone defect were done. Results At 4 weeks after modeling, 48 rabbits were diagnosed as having osteomyelitis, including periosteal new bone formation, destruction of bone, and soft tissue swell ing. The Norden score was 3.83 ± 0.52. At 8 weeks after treatment, sinus healed in groups C and D, but sinus was observed in groups A and B; the gross bone pathologieal scores of group D were significantly better than those of groups A and B (P lt; 0.05). Bone defects were repaired completely in group D, the results of the longest diameter of bone defects in group D was significantly better than those in the other 3 groups (P lt; 0.05). New bone formation was observed in groups C and D, but periosteal reactionand marrow low-density shadow were observed in groups A and B; Norden score in group D was significantly better than those in groups A, B, and C (P lt; 0.05). HE staining showed that there were a large number of trabecular bone formation and fibrosis, with no obvious signs of infection in groups C and D, but neutrophil accumulation was observed in groups A and B; Smeltzer scores in groups C and D were significantly better than those in groups A and B (P lt; 0.05). Bacteriological results showed higher negative rate in groups C and D than in groups A and B (P lt; 0.05). Conclusion Cationic l iposome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold can be a good treatment for infectious bone defects in rabbits, providing a new strategy for the therapy of bone defects in chronic infection.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • Efficacy of Wound Dressing with Microspheres Containing Levofloxacin on Burns Treatment

    This research was aimed to find the skin irritation and burns treatment effect of wound dressing with microspheres containing levofloxacin. We used reference GB/T16886.10-2005 to evaluate the dressing skin irritation. We prepared rabbit models divided into three groups. The control group was rapped with Vaseline gauze bandage, while the positive control group was rapped with the wounds of nano-silver paste bandage. The experimental sample group was rapped with wound dressing with microspheres containing levofloxacin. We measured the wound without healing area and the hydroxyproline content at the ends of 3 d, 6 d, 9 d, 14 d, 21 d, 28 d. and meanwhile performed histopathological examination. The experimental results showed that the dressing primary irritation index was 0. The nonhealing wound area of theexperimental sample group and positive control group at the ends of 6 d, 9 d, 14 d, 21 d were less than that of the control group (P<0.05). The nonhealing wound area of the experimental sample group at the ends of 9 d and 14 d was significantly lower than that of the positive control group (P<0.05). The hydroxyproline content of the experimental sample group at the ends of 6 d, 9 d and 14 d was significantly higher than that of the positive control group and blank control group (P<0.05). The pathology observed of the experimental sample group at 21 d were the earliest appendages. The wound dressing with microspheres containing levofloxacin has minimal skin irritation, effectively promote wound healing of burn.

    Release date: Export PDF Favorites Scan
  • COMPARISON STUDY ON INJECTABLE TISSUE ENGINEERED NUCLEUS PULPOSUS CONSTRUCTED BY DIFFERENT CELLS AND CHITOSAN HYDROGEL

    Objective To compare the growth and extracellular matrix biosynthesis of nucleus pulposus cells (NPCs)and bone marrow mesenchymal stem cells (BMSCs) in thermo-sensitive chitosan hydrogel and to choose seed cells for injectable tissue engineered nucleus pulposus. Methods NPCs were isolated and cultured from 3-week-old New Zealand rabbits (male or female, weighing 150-200 g). BMSCs were isolated and cultured from bone marrow of 1-month-old New Zealand rabbits (male or female, weighing 1.0-1.5 kg). The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium β glycerophosphate, and hydroxyethyl cellulose. Then, NPCs at the 2nd passage or BMSCs at the 3rd passage were mixed with chitosan hydrogel to prepare NPCs or BMSCs-chitosan hydrogel complex as injectable tissue engineered nucleus pulposus. The viabil ities of NPCs and BMSCs in the chitosan hydrogel were observed 2 days after compound culture. The shapes and distributions of NPCs and BMSCs on the scaffold were observed by scanning electron microscope (SEM) 1 week after compound culture. The histology and immunohistochemistry examination were performed. The expressions of aggrecan and collagen type II mRNA were analyzed by RT-PCR 3 weeks after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at37 (after 15 minutes) due to crossl inking reaction. Acridine orange/propidium iodide staining showed that the viabil ity rates of NPCs and BMSCs in chitosan hydrogel were above 90%. The SEM observation demonstrated that the NPCs and BMSCs distributed in the reticulate scaffold, with extracellular matrix on their surfaces. The results of HE, safranin O histology and immunohistochemistry staining confirmed that the NPCs and BMSCs in chitosan hydrogel were capable of producing extracellular matrix. RT-PCR results showed that the expressions of collagen type II and aggrecan mRNA were 0.564 ± 0.071 and 0.725 ± 0.046 in NPCs culture with chitosan hydrogel, and 0.713 ± 0.058 and 0.852 ± 0.076 in BMSCs culture with chitosan hydrogel; showing significant difference (P lt; 0.05). Conclusion The thermo-sensitive chitosan hydrogel has good cellular compatibil ity. BMSCs culture with chitosan hydrogel maintains better cell shape, prol iferation, and extracellular matrix biosynthesis than NPCs. 

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content