west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "heart rate variability" 17 results
  • Application of Linear and Nonlinear Characteristics of Heart Rate Variability in Assessment of Autonomic Nervous System Activity

    Calculation of linear parameters, such as time-domain and frequency-domain analysis of heart rate variability (HRV), is a conventional method for assessment of autonomic nervous system activity. Nonlinear phenomena are certainly involved in the genesis of HRV. In a seemingly random signal the Poincaré plot can easily demonstrate whether there is an underlying determinism in the signal. Linear and nonlinear analysis methods were applied in the computer words inputting experiments in this study for physiological measurement. This study therefore demonstrated that Poincaré plot was a simple but powerful graphical tool to describe the dynamics of a system.

    Release date: Export PDF Favorites Scan
  • Heart Rate Variability Study Based on a Novel RdR RR Intervals Scatter Plot

    On the basis of Poincare scatter plot and first order difference scatter plot, a novel heart rate variability (HRV) analysis method based on scatter plots of RR intervals and first order difference of RR intervals (namely, RdR) was proposed. The abscissa of the RdR scatter plot, the x-axis, is RR intervals and the ordinate, y-axis, is the difference between successive RR intervals. The RdR scatter plot includes the information of RR intervals and the difference between successive RR intervals, which captures more HRV information. By RdR scatter plot analysis of some records of MIT-BIH arrhythmias database, we found that the scatter plot of uncoupled premature ventricular contraction (PVC), coupled ventricular bigeminy and ventricular trigeminy PVC had specific graphic characteristics. The RdR scatter plot method has higher detecting performance than the Poincare scatter plot method, and simpler and more intuitive than the first order difference method.

    Release date: Export PDF Favorites Scan
  • Exercise-sensitive Indices Screening from Electrocardiogram Based on Rest-workload Alternating Pattern

    Heart rate is the most common index to directly monitor the level of physical stress by comparing the subject's heart rate with an appropriate "target heart rate" during exercise. However, heart rate only reveals the cardiac rhythm of the complex cardiovascular changes that take place during exercise. It is essential to get the dynamic response of the heart to exercise with various indices instead of only one single measurement. Based on the rest-workload alternating pattern, this paper screens the sensitive indices of exercise load from electrocardiogram (ECG) rhythm and waveform, including 4 time domain indices and 4 frequency domain indices of heart rate variability (HRV), 3 indices of waveform similarity and 2 indices of high frequency noise. In conclusion, RR interval (heart rate) is a reliable index for the realtime monitoring of exercise intensity, which has strong linear correlation with load intensity. The ECG waveform similarity and HRV indices are useful for the evaluation of exercise load.

    Release date: Export PDF Favorites Scan
  • Study on the Optimum Order of Autoregressive Models for Heart Rate Variability Analysis

    Heart rate variability (HRV) analysis technology based on an autoregressive (AR) model is widely used in the assessment of autonomic nervous system function. The order of AR models has important influence on the accuracy of HRV analysis. This article presents a method to determine the optimum order of AR models. After acquiring the ECG signal of 46 healthy adults in their natural breathing state and extracting the beat-to-beat intervals (RRI) in the ECG, we used two criteria, i.e. final prediction error (FPE ) criterion to estimate the optimum model order for AR models, and prediction error whiteness test to decide the reliability of the model. We compared the frequency domain parameters including total power, power in high frequency (HF), power in low frequency (LF), LF power in normalized units and ratio of LF/HF of our HRV analysis to the results of Kubios-HRV. The results showed that the correlation coefficients of the five parameters between our methods and Kubios-HRV were greater than 0.95, and the Bland-Altman plot of the parameters was in the consistent band. The results indicate that the optimization algorithm of HRV analysis based on AR models proposed in this paper can obtain accurate results, and the results of this algorithm has good coherence with those of the Kubios-HRV software in HRV analysis.

    Release date: Export PDF Favorites Scan
  • Primary Study on Predicting the Termination of Paroxysmal Atrial Fibrillation Based on a Novel RdR RR Intervals Scatter Plot

    Predicting the termination of paroxysmal atrial fibrillation (AF) may provide a signal to decide whether there is a need to intervene the AF timely. We proposed a novel RdR RR intervals scatter plot in our study. The abscissa of the RdR scatter plot was set to RR intervals and the ordinate was set as the difference between successive RR intervals. The RdR scatter plot includes information of RR intervals and difference between successive RR intervals, which captures more heart rate variability (HRV) information. By RdR scatter plot analysis of one minute RR intervals for 50 segments with non-terminating AF and immediately terminating AF, it was found that the points in RdR scatter plot of non-terminating AF were more decentralized than the ones of immediately terminating AF. By dividing the RdR scatter plot into uniform grids and counting the number of non-empty grids, non-terminating AF and immediately terminating AF segments were differentiated. By utilizing 49 RR intervals, for 20 segments of learning set, 17 segments were correctly detected, and for 30 segments of test set, 20 segments were detected. While utilizing 66 RR intervals, for 18 segments of learning set, 16 segments were correctly detected, and for 28 segments of test set, 20 segments were detected. The results demonstrated that during the last one minute before the termination of paroxysmal AF, the variance of the RR intervals and the difference of the neighboring two RR intervals became smaller. The termination of paroxysmal AF could be successfully predicted by utilizing the RdR scatter plot, while the predicting accuracy should be further improved.

    Release date: Export PDF Favorites Scan
  • A Heart Rate Variability Analysis System for Short-term Applications

    In this paper, a heart rate variability analysis system is presented for short-term (5 min) applications, which is composed of an electrocardiogram signal acquisition unit and a heart rate variability analysis unit. The electrocardiogram signal acquisition unit adopts various digital technologies, including the low-gain amplifier, the high-resolution analog-digital converter, the real-time digital filter and wireless transmission etc. Meanwhile, it has the advantages of strong anti-interference capacity, small size, light weight, and good portability. The heart rate variability analysis unit is used to complete the R-wave detection and the analyses of time domain, frequency domain and non-linear indexes, based on the Matlab Toolbox. The preliminary experiments demonstrated that the system was reliable, and could be applied to the heart rate variability analysis at resting, motion states. etc.

    Release date: Export PDF Favorites Scan
  • Assessment of the Effect of Pain on Autonomic Nervous System in Human Body Using Heart Rate Variability Analysis

    The purpose of this study is to discuss the feasibility of establishing capsaicin pain model and the possibility to evaluate different degrees of pain by the heart rate variability (HRV). It also aims to investigate the changes of autonomic nervous activity of volunteers during the process of pain caused by capsaicin. A total of 30 volunteers were selected, who were physically and mentally healthy, into the study. To assess the effects of capsaicin on the healthy volunteers, we recorded the Visual Analogue Scale (VAS) scores after the capsaicin stimulus. Additionally, the electrocardiogram signals and HRV analysis index before and after stimulating were also recorded, respectively. More specifically, the HRV analysis indexes included the time domain index, the frequency domain index, and the nonlinear analysis index. The results demonstrated that the activity of the autonomic nerves was enhanced in the process of capsaicin stimulus, especially for the sympathetic nerve, which exhibited a significantly differences in HRV. In conclusion, the degree of pain can be reflected by the HRV. It is feasible to establish a capsaicin pain model. And in further experiments, HRV analysis could be used as a reference index for quantitative evaluation of pain.

    Release date: Export PDF Favorites Scan
  • Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography

    Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multi-electrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human’s finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.

    Release date: Export PDF Favorites Scan
  • Analysis Methods of Short term Non linear Heart Rate Variability and Their Application in Clinical Medicine

    The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and timefrequency analysis, has reached a lot of consensus. The nonlinear analysis has also been widely applied in biomedical and clinical researches. However, for nonlinear HRV analysis, especially for shortterm nonlinear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three shortterm nonlinear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine.

    Release date: Export PDF Favorites Scan
  • Estimation of the Power Spectrum of Heart Rate Variability Using Improved Welch Method to Analyze the Degree of Fatigue

    Heart rate variability (HRV) is an important point to judge a person’s state in modern medicine. This paper is aimed to research a person’s fatigue level connected with vagal nerve based on the HRV using the improved Welch method. The process of this method is that it firstly uses a time window function on the signal to be processed, then sets the length of time according to the requirement, and finally makes frequency domain analysis. Compared with classical periodogram method, the variance and consistency of the present method have been improved. We can set time span freely using this method (at present, the time of international standard to measure HRV is 5 minutes). This paper analyses the HRV’s characteristics of fatigue crowd based on the database provided by PhysioNet. We therefore draw the conclusion that the accuracy of Welch analyzing HRV combining with appropriate window function has been improved enormously, and when the person changes to fatigue, the vagal activity is diminished and sympathetic activity is raised.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content