Accurate segmentation of whole slide images is of great significance for the diagnosis of pancreatic cancer. However, developing an automatic model is challenging due to the complex content, limited samples, and high sample heterogeneity of pathological images. This paper presented a multi-tissue segmentation model for whole slide images of pancreatic cancer. We introduced an attention mechanism in building blocks, and designed a multi-task learning framework as well as proper auxiliary tasks to enhance model performance. The model was trained and tested with the pancreatic cancer pathological image dataset from Shanghai Changhai Hospital. And the data of TCGA, as an external independent validation cohort, was used for external validation. The F1 scores of the model exceeded 0.97 and 0.92 in the internal dataset and external dataset, respectively. Moreover, the generalization performance was also better than the baseline method significantly. These results demonstrate that the proposed model can accurately segment eight kinds of tissue regions in whole slide images of pancreatic cancer, which can provide reliable basis for clinical diagnosis.
Hepatocellular carcinoma (HCC) is the most common liver malignancy, where HCC segmentation and prediction of the degree of pathological differentiation are two important tasks in surgical treatment and prognosis evaluation. Existing methods usually solve these two problems independently without considering the correlation of the two tasks. In this paper, we propose a multi-task learning model that aims to accomplish the segmentation task and classification task simultaneously. The model consists of a segmentation subnet and a classification subnet. A multi-scale feature fusion method is proposed in the classification subnet to improve the classification accuracy, and a boundary-aware attention is designed in the segmentation subnet to solve the problem of tumor over-segmentation. A dynamic weighted average multi-task loss is used to make the model achieve optimal performance in both tasks simultaneously. The experimental results of this method on 295 HCC patients are superior to other multi-task learning methods, with a Dice similarity coefficient (Dice) of (83.9 ± 0.88)% on the segmentation task, while the average recall is (86.08 ± 0.83)% and an F1 score is (80.05 ± 1.7)% on the classification task. The results show that the multi-task learning method proposed in this paper can perform the classification task and segmentation task well at the same time, which can provide theoretical reference for clinical diagnosis and treatment of HCC patients.
Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.
Computed tomography (CT) imaging is a vital tool for the diagnosis and assessment of lung adenocarcinoma, and using CT images to predict the recurrence-free survival (RFS) of lung adenocarcinoma patients post-surgery is of paramount importance in tailoring postoperative treatment plans. Addressing the challenging task of accurate RFS prediction using CT images, this paper introduces an innovative approach based on self-supervised pre-training and multi-task learning. We employed a self-supervised learning strategy known as “image transformation to image restoration” to pretrain a 3D-UNet network on publicly available lung CT datasets to extract generic visual features from lung images. Subsequently, we enhanced the network’s feature extraction capability through multi-task learning involving segmentation and classification tasks, guiding the network to extract image features relevant to RFS. Additionally, we designed a multi-scale feature aggregation module to comprehensively amalgamate multi-scale image features, and ultimately predicted the RFS risk score for lung adenocarcinoma with the aid of a feed-forward neural network. The predictive performance of the proposed method was assessed by ten-fold cross-validation. The results showed that the consistency index (C-index) of the proposed method for predicting RFS and the area under curve (AUC) for predicting whether recurrence occurs within three years reached 0.691 ± 0.076 and 0.707 ± 0.082, respectively, and the predictive performance was superior to that of existing methods. This study confirms that the proposed method has the potential of RFS prediction in lung adenocarcinoma patients, which is expected to provide a reliable basis for the development of individualized treatment plans.